

第26回日本水環境学会シンポジウム 26th the Symposium of JSWE

「MS技術と環境微量化学物質」 MS technology and environmental trace chemicals

令和5年9月21日(木) 9: 00-12: 30 MS技術研究委員会 MS Technology Research Committee

<発表時間について Announcement time>

≪口頭発表 oral presentation≫

発表14分、質疑応答3分、交代時間1分

15 minutes for presentation, 4 minutes for Q&A, 1 minute for shifts

12分 1鈴 12 minutes 1 bell

15分 2鈴 15 minutes 2 bells

19分 3鈴 19 minutes 3 bells

MS26_O_01 大方 正倫 大阪市立環境科学研究センター

AIQS-LCの実装に向けたデータベース拡充の 検討

第26回日本水環境学会シンポジウム MS技術研究委員会 令和5(2023)年9月21日(木) 第26回日本水環境学会シンポジウム MS技術と環境微量化学物質(MS技術研究委員会)

AIQS-LCの実装に向けた データベース拡充の検討

大阪市立環境科学研究センター 大方正倫、市原真紀子 北九州市立大学 宮脇崇 国立環境研究所 中島大介

AIQSとは

Automated Identification and Quantification System

自動

同定

定量

システム

- ■化学物質の多成分一斉分析法
 - ✓ 北九州市立大学 門上先生が開発
 - ✓ GC-MS版とLC-MS版がある
 - ✓ データベースを使用して、スキャン測定データを解析
 - (①保持時間、②マススペクトル、③検量線情報)
 - ✓ 低コストで簡易に半定量が可能
 - ✓ データベースに物質を追加すれば遡及解析も可能

環境モニタリングでの活用が期待される

AIQSの現状

■ AIQS-GC

- ✓約1000物質が登録
- ✓ 複数メーカーの装置で使用可能
- ✓ 地方環境研究所でも導入が進み、災害時等でも活用 (国立環境研究所 II 型共同研究)

■ AIQS-LC

- ✓約500物質が登録
- ✓ 装置メーカーが限定
- ✓ ポジティブイオンモードのみ

普及促進のための検討を

分類	物質数
農薬	296
医薬品	191
日用品由来物質	18
工業用物質	29
その他	4
合計	538

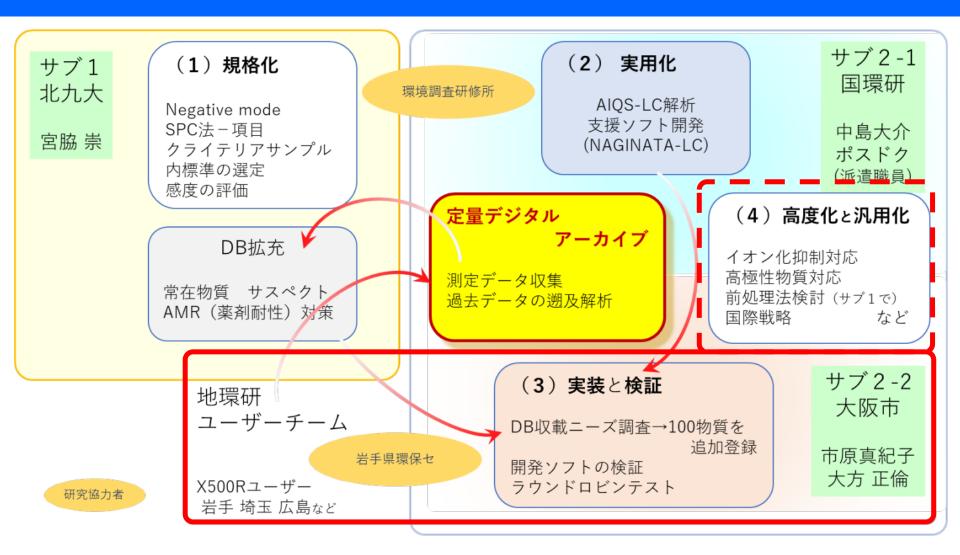
AIQS-LCの条件

- ■水質試料の前処理
 - ✓ Oasis HLB+Sep-Pak AC-2を用いた固相抽出

■測定条件

カラム		Inertsil ODS-4 HP 3 um, 2.1 x 150 mm (GL サイエンス)											
移動相	Α	5 mmol	5 mmol/L 酢酸アンモニウムを含む精製水										
19301日	В	5 mmol/L 酢酸アンモニウムを含むメタノール											
グラジエント	Time (min.)	0	30	40	40.01	50							
	A (%)	95	5	5	95	95							
	B (%)	5	95	95	5	5							

Mass Spectrometry	X500R QTOF システム (SCIEX)
Ion Source	Turbo V [™] Ion Source (ESI)
Mode	SWATH (TOF MS; m/z 50-1000, TOF MS/MS; m/z 50-1000)
Polarity	Positive


環境研究総合推進費による研究

データ非依存型取得法による環境汚染物質の 定量デジタルアーカイブ手法の開発

- ✓ 研究代表者:中島大介(国立環境研究所)
- ✓ 2023~2025年度
- ✓ AIQS-LCを活用して環境モニタリングの効率化を目指す

■検討事項

- ①規格化:装置性能評価法の作成(ESI ポジ/ネガ)
- ②実用化と迅速化:解析支援ソフトウェアの開発
- ③実装と検証: データベース充実と同定・定量精度の検証
- ④<u>高度化と汎用化</u>: 高極性物質への対応等の検討

ネガティブイオンモード含め追加物質選定→登録

画像出典:環境研究総合推進費(委託費)研究計画書

追加登録物質の選定方法

- ■各種規制対象物質の調査
 - ✓水質汚濁に係る環境基準、PRTR制度対象物質等を対象
 - ✓ 検出状況、数量や毒性、LC-MSでの測定可否等を考慮
- 地方環境研究所等への要望調査
 - ✓ AIQS-GCに関する国立環境研究所 II 型実施共同研究*に 参画する45の地環研を対象にアンケート調査

(*災害時等における化学物質の網羅的簡易迅速測定法を活用した 緊急調査プロトコルの開発(2022-2024年度))

要望調査の結果(概要)

- 回答状況
 - √ 33 (/45) 機関から回答あり
 - ✓ うち10機関からは要望あり
 - ✓ 合計86物質
- 複数の機関から要望のあった物質 (機関数)
 - √ PFOS (4)
 - ✓ PFOA (4)
 - ✓ チウラム (3)
 - ✓ 6-PPDキノン (2)
 - ✓ グリホサート (2)
 - ✓ ヘキサメチレンテトラミン (2)

要望調査の結果(農薬・医薬品)

■ 農薬

- ✓ フルスルファミド
- ✓ フルアジナム
- ✓ アミスルブロム
- ✓ シエノピラフェン
- ✓ トラロメトリン
- ✓ ミルベメクチンA3/A4
- ✓ トルフェンピラミド
- ✓ ピラクロニル
- ✓ フェントラザミド
- ✓ ブタクロール
- ✓ ブトルアリン
- ✓ イミノクタジン
- ✓ ジクワット
- ✓ パラコート

- ✓ グリホシネート
- ✓ アミノメチルホスホン酸(AMPA)
- ✓ 3-メチルホスフィニコプロピオン酸(MPPA)

■ 医薬品

- ✓ アジルサルタン
- ✓ カフェイン
- ✓ カルバマゼピン
- ✓ クロタミトン
- ✓ ロキソプロフェン
- ✓ テルミサルタン

要望調査の結果(その他)

■ 防腐剤

- ✓ 2-Metyl-4-isothiazolin-3-one(MIT)
- √ 5-Chloro-2-Metyl-3-isothiazolone(CMIT)
- 浄水処理対応困難物質(12物質)
- 過去に水質事故の原因となった物質等(9物質)
- 環境基準項目(シマジンなど9物質)
- その他
 - ✓ PFHxS+19の有機フッ素化合物(泡消火剤)
 - ✓ 6-PPD
 - ✓ アクリルアミド
 - ✓ ポリオキシエチレンアルキルエーテル
 - ✓ エチレンジアミン四酢酸(EDTA)

AIQS-LC未収載の物質

■ 医薬品

- ✓ カルバマゼピン、フェニトイン(抗てんかん薬)
- ✓ テルミサルタン、イルベサルタン、オルメサルタン、バルサルタン (高血圧治療薬)
- ✓ アトルバスタチン、ロスバスタチン(高脂血症治療薬)
- ✓ アモキシシリン、セフカペンピボキシル、セフジトレンピボキシル、 ミノサイクリン、ガレノキサシン(抗菌剤)
- ネガティブイオンモード対象物質
 - ✓ LAS (C10,11,12,13,14)
 - ✓ 有機フッ素化合物(PFAS)

大阪市立環境科学研究センターの紹介 15/11

ご清聴ありがとうございました

本発表の内容

実装に向けたデータベース構築

- ネガティブモードを含め対象物質を追加する
 - ✓ 追加すべき物質のニーズ調査
 - ✓ 100物質を目標に追加登録物質として選定
 - ✓ 新規物質のデータベース追加登録(保持時間、MSスペクトル、検量線情報)

HILIC検討について

1,3-Diphenylguanidine

Melamine

Cyanuric acid

Guanylurea

Bis(2-(2-methoxyethoxy)ethyl) ether

Ammonium undecafluorohexanoate

3-aminomethyl-3,5,5-trimethylcyclohexylamine

Trifluoromethanesulphonic anhydride

Methyldopa

Cyanoguanidine

6-Mercaptopurine

Acetylsalicylic acid

Trichlorfon

Gabapentin

Vigabatrin

Amitrole

Metformin

Cyromazine

Lisinopril

Dapsone

2-Quinoxalinecarboxylic acid

Dinoseb

6-phenyl-1,3,5-triazine-2,4-diyldiamine

1,3-Di-o-tolylguanidine

PFBA

PFBS

メラミン-15N3 シアヌル酸-13C3

Cyromazine-(cyclopropyl-2,2,3,3-d4)

PFBS-13C3

Waters XBridge BEH Amide

Merck ZIC-HILIC

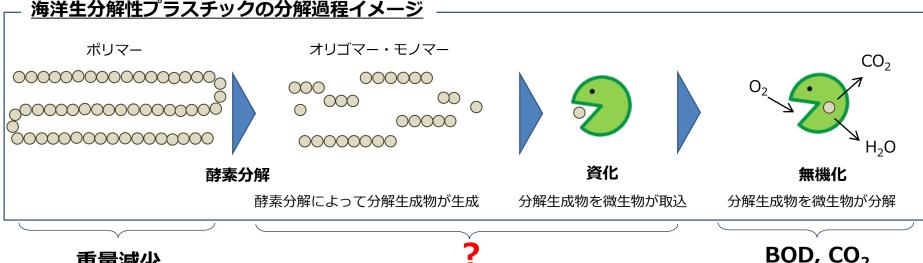

Merck ZIC-pHILIC

Merck ZIC-cHILIC

GL science Inertsil HILIC

Resonac HILICpak VN-50 2D

海洋生分解性プラスチックの 生分解度と分解生成物量の関係


株式会社 島津テクノリサーチ

〇 黒石佳奈、苗田千尋、江頭佳奈、峯孝樹、嶽盛公昭、八十島誠

第26回水環境学会シンポジウム 2023年9月21日

1. 背景と目的

- ◆ 背景 ✓ 石油系から生分解性プラスチックへの移行が促進
 - ✓ 生分解性プラスチックを使用した製品の導入が開始¹⁾
 - → 今後の用途拡大のために、生分解メカニズムの解明が重要

重量減少(従来法)

<u>分解過程の変化</u>がわからない

BOD, CO₂ (従来法)

✓ 分解過程の変化を見る技術の開発²⁾

◆ 本発表の目的

生分解度と分解生成物の定量値の関係性の把握

海洋生分解性プラスチック: PHBH

◆ 試料

- ▶ 植物油を原料に微生物から生産されたポリマー 1)
- ▶ 使用用途: ストロー・レジ袋・カトラリー・食品容器包装材等 1)

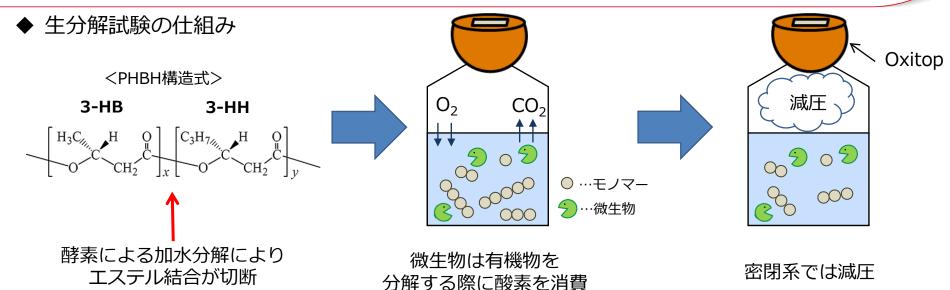
3-ヒドロキシ酪酸

(3-Hydroxybutyric acid : **3-HB**)

分子量: 104.10 Log K_{ow}: -0.47²⁾

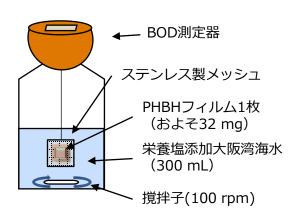
он он

3-ヒドロキシヘキサン酸


(3- Hydroxyhexanoic acid : **3-HH**)

分子量:132.16 Log K_{ow}:0.81²⁾

PHBH構成モル比³⁾


<PHBH構造式>

生分解試験

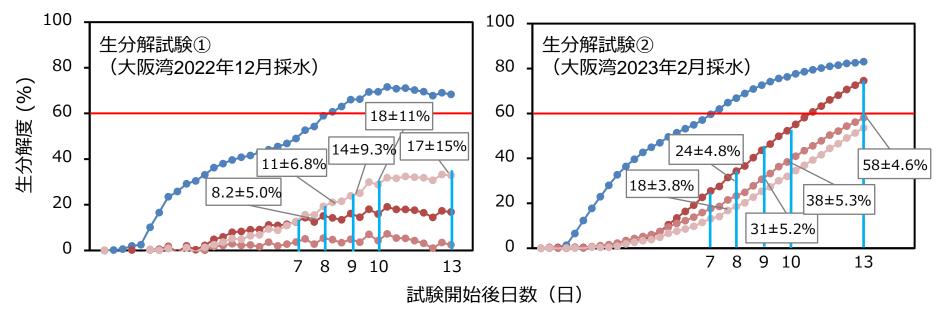
Oxitop: 圧力を測定し圧力変化からBODを算出

◆ 生分解試験 (PHBHのリアクター)

◆ 生分解試験で使用したリアクターの種類

Blank: 海水のみ

→ プラスチックがない状態で微生物が消費する 酸素量を確認


Reference: 基準物質 (PHB粉末) +海水

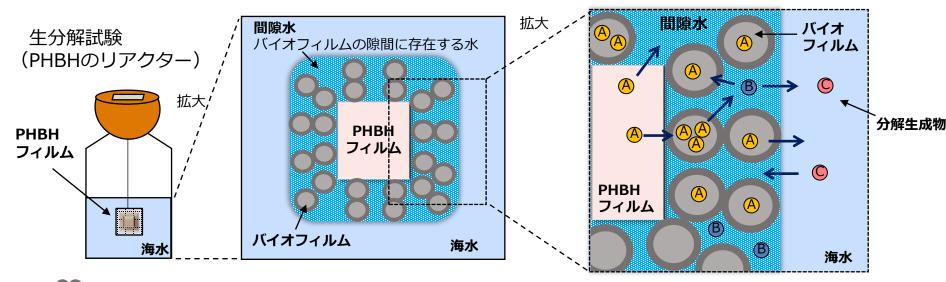
→ 生分解試験が有効か判断

PHBH: PHBHフィルム+海水

生分解試験の進行

生分解で消費した酸素濃度(mg/L)生分解度(%) =*100プラスチックをすべて分解するときに必要な酸素濃度(mg/L)

PHB粉末(Reference) (n=1)

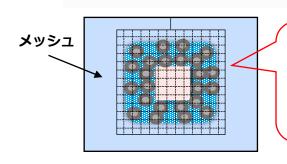


PHBHフィルム 試料採取時の平均生分解度 (*n*=3)

- PHB粉末の生分解度は60%以上であり、生分解試験は有効¹)
- 分解途上のPHBHフィルムを異なる生分解度で5回採取 (Oxitopが装着しているのは、15本中3本のみ)

評価サンプルの採取

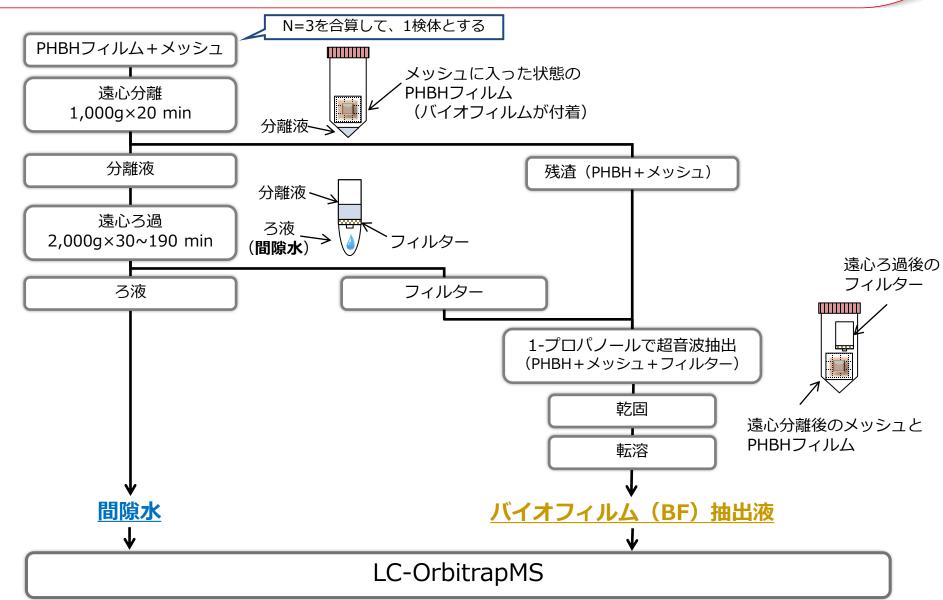
A: <u>バイオフィルム(BF)抽出液</u>


→ バイオフィルムやPHBHフィルム表面に存在する分解生成物を把握

B: <u>間隙水</u>

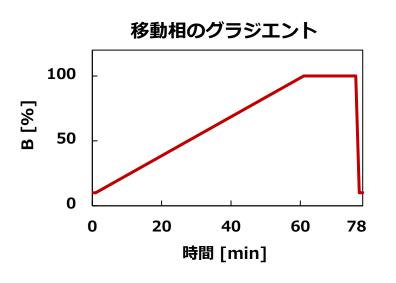
→ 間隙水に存在する分解生成物を把握

C:海水

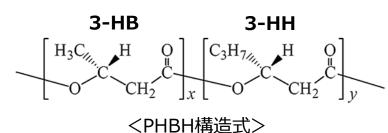

→ 海水に存在する分解生成物を把握

PHBHフィルムはメッシュに包まれた状態で生分解試験に使用するため、 メッシュを覆いこんだ状態でバイオフィルムが付着

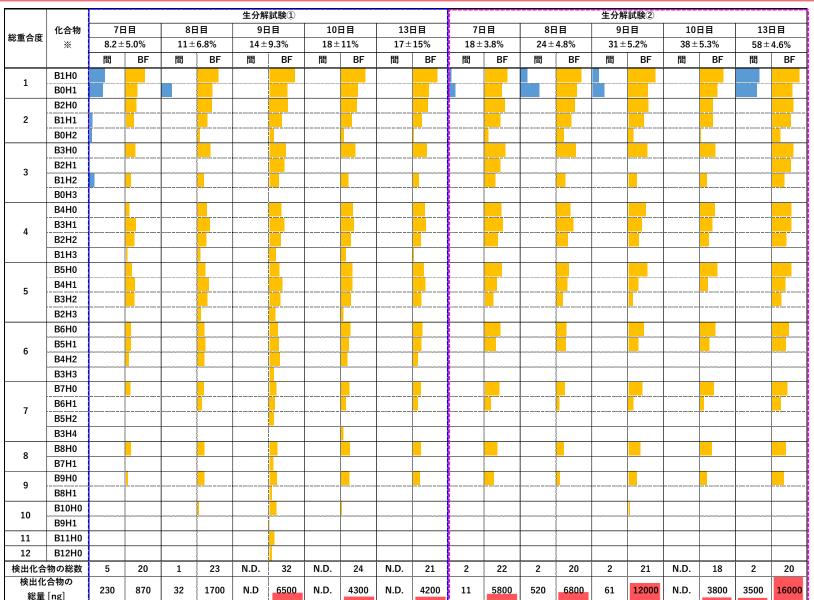
→ PHBHフィルムとメッシュは分離できず、
間隙水にはメッシュに付着する海水も含まれる


前処理方法(PHBHフィルム)

測定条件

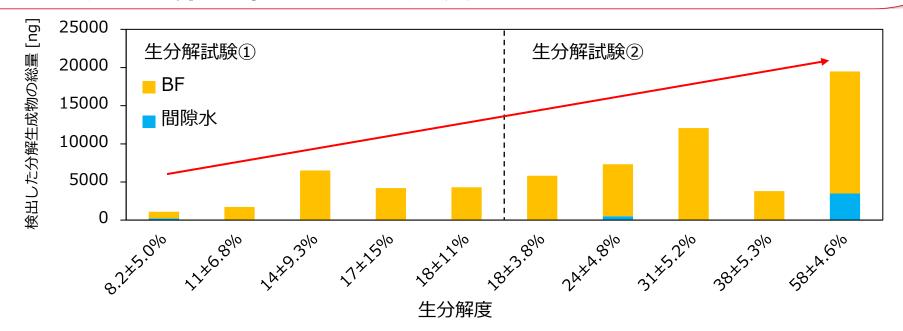

♦ LC

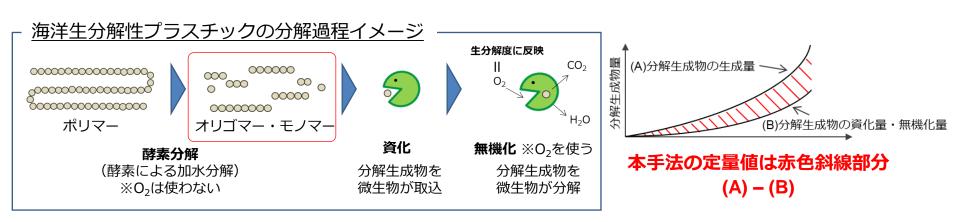
液体クロマトグラフ	LC-30AD(島津製作所製)						
カラム	YMC-Triart C18 (2.0 mm (i.d.) ×100 mm, 3 μm)						
移動相	A: 0.1%						
流速	0.2 mL/min						
試料注入量	5 μL						
カラム温度	40℃						


◆ OrbitrapMS

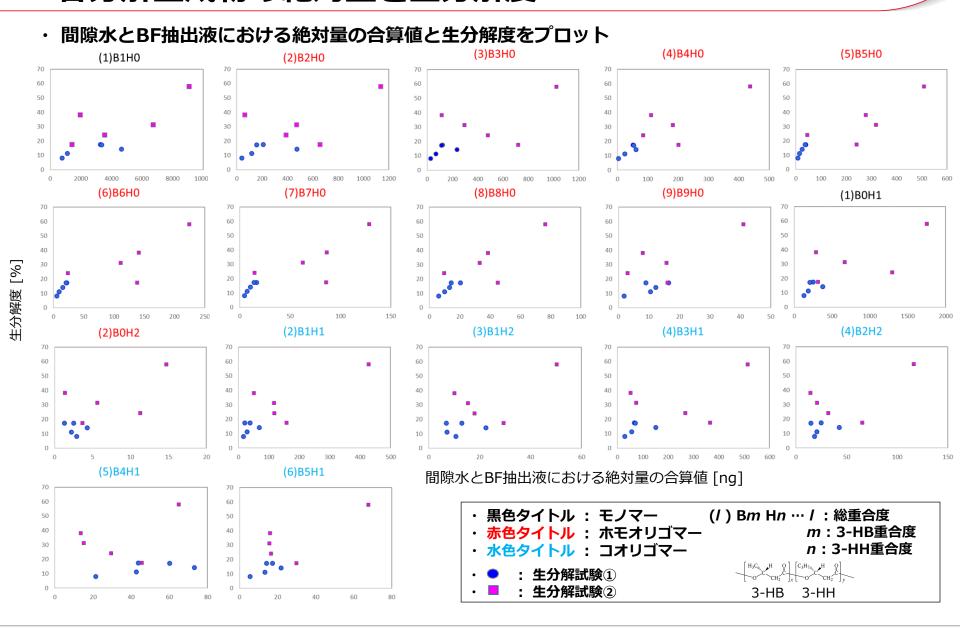
質量分析計	Q Exactive HF (Thermo Scientific製)
イオン化	ESI - Negative
分解能	60,000
質量走査範囲	m/z 50~750, 160~2400

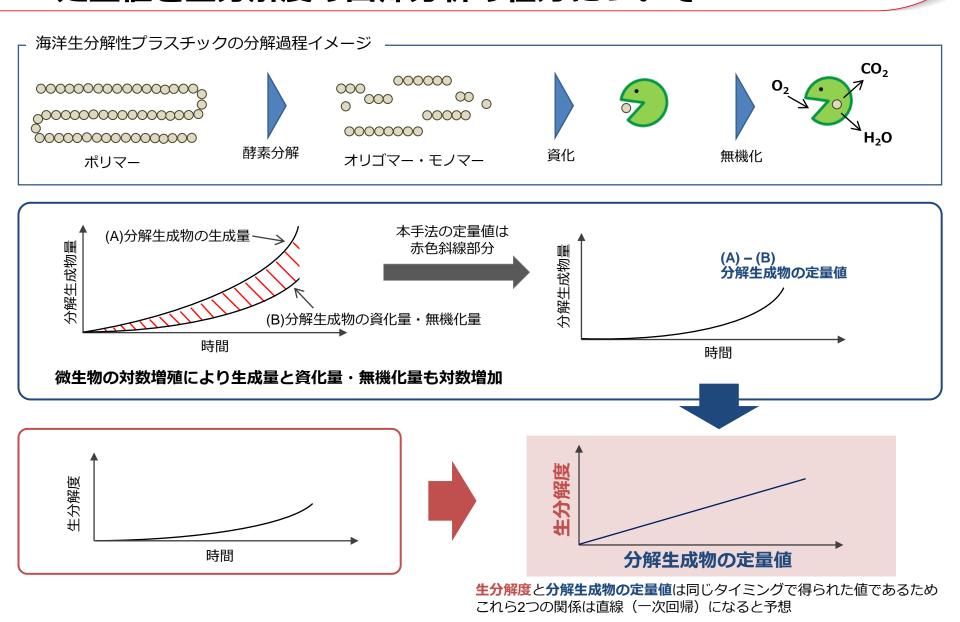
- ✓ PHBHのモノマー2種から構成される総重合度20までのオリゴマーの 1価のモノアイソトピック精密質量について質量誤差 ±5ppmの条件で 抽出イオンクロマトグラムのピーク検出有無を確認
- ✓ 3-HB・3-HH標準溶液200 ng/mLの面積値をもとに相対定量を実施


間隙水とBF抽出液における分解生成物の絶対量



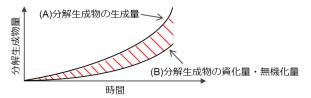
絶対量 = 試料のピーク面積値/標準溶液のピーク面積値 × 標準溶液の濃度 × 試料量

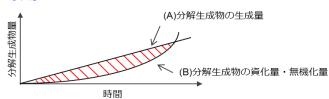

分解生成物の総量と生分解度


- ✓ 生分解度の増加に伴い、分解生成物の絶対量が概ね増加
 - → 酵素分解による生成量 > 微生物による分解量であることが示唆

各分解生成物の絶対量と生分解度

定量値と生分解度の回帰分析の仕方について

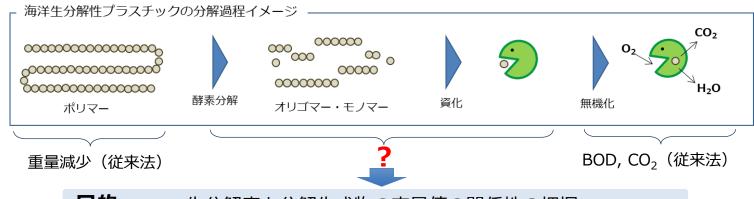



各分解生成物の絶対量と生分解度の関係

・一次回帰式の傾き・切片・決定係数R² (全ての試料から検出された物質について解析) 独立変数(x):間隙水とBF抽出液における絶対量の合計[ng]、従属変数(y):生分解度[%]

	3-HB モノマー			3-HBホモオリゴマー									
	(1)B1H0	(2)B2H0	(3)B3H0	(4)B4H0	(5)B5H0	(6)B6H0	(7)B7H0	(8)B8H0	(9)B9H0				
傾き	0.0043	0.030	0.031	0.10	0.078	3 0.17	7 0.29	0.59	1.0				
切片	8.4	13	14	11	12		2 11	8.1	10				
R^2	0.57	0.44	0.44	0.75	0.82	0.76	0.73	0.74	0.54				
	3-HH 3-HHホモ モノマー オリゴマー												
	(1)B0H1	(2)B0H	2 (2)B1	H1 (3)E	31H2 (4)B3H1	(4)B2H2	(5)B4H1	(6)B5H1				
傾き	0.02	21 2	2.2 0.		0.76	0.055	0.30	0.0093	0.68				
切片	ī 1	.2	13	13	9.8	15	13	23	9.0				
R	0.5	59 0.	45	0.67	0.45	0.35	0.4	0.00017	0.61				

✓ 3-HBホモオリゴマーにおいてR²が高い傾向



R²が低値の化合物は(A)生成量と(B)資化・無機化量の増加パターンが異なることが示唆

4. まとめ

背景

目的

生分解度と分解生成物の定量値の関係性の把握

結果

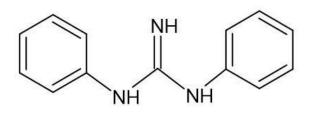
一次回帰式の傾き・切片・決定係数 (全ての試料から検出された物質について解析) 独立変数(x): 間隙水とBF抽出液における絶対量の合計[ng]、従属変数(y): 生分解度[%]

	3-HB モノマー	3-HBホモオリゴマー							3-HH モノマー	3-HHホモ オリゴマー			コオリ	ゴマー			
	(1)B1H0	(2)B2H0	(3)B3H0	(4)B4H0	(5)B5H0	(6)B6H0	(7)B7H0	(8)B8H0	(9)B9H0	(1)B0H1	(2)B0H2	(2)B1H1	(3)B1H2	(4)B3H1	(4)B2H2	(5)B4H1	(6)B5H1
 傾き	0.0043	0.030	0.031	0.10	0.078	0.17	0.29	0.59	1.0	0.021	2.2	0.10	0.76	0.055	0.30	0.0093	0.68
切片	8.4	13	14	11	12	12	11	8.1	10	12	13	13	9.8	15	13	23	9.0
R ²	0.57	0.44	0.44	0.75	0.82	0.76	0.73	0.74	0.54	0.59	0.45	0.67	0.45	0.35	0.4	0.00017	0.61

- ✓ 3-HBホモオリゴマーにおいてR²が高い傾向
- ✓ R²が低値の化合物は生成量と資化・無機化量の増加パターンが異なることが示唆

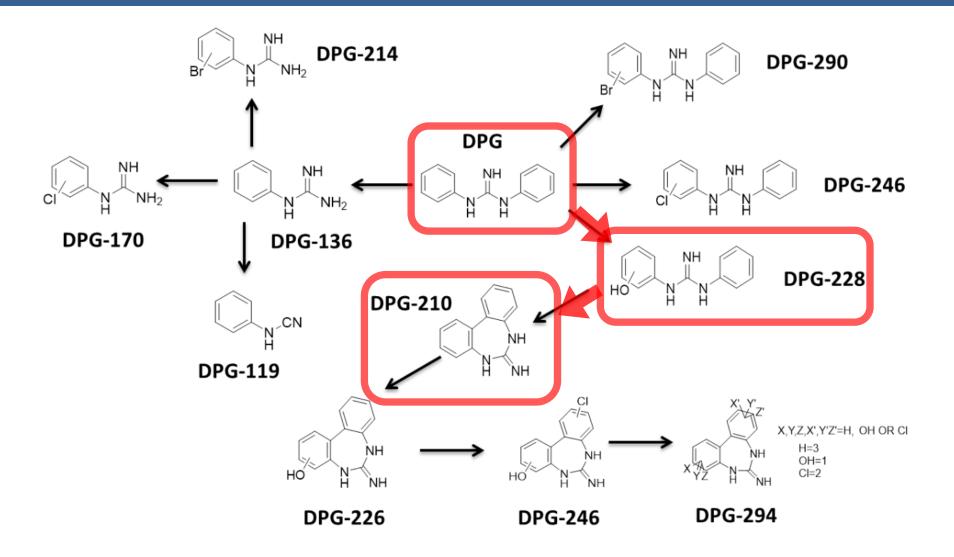
謝辞

この成果は、国立研究開発法人新エネルギー・ 産業技術総合開発機構(NEDO)の 委託業務(JPNP20008)の結果得られたものである。



○市原真紀子¹, 山本敦史², 中村実沙子³, 浅川大地¹, 須戸幹⁴ 大阪市立環境科学研究センター¹, 公立鳥取環境大学², 大阪健康安全基盤研究所³, 滋賀県立大学⁴

ジフェニルグアニジン (DPG) とは?



1,3-diphenylguanidine

- ●PMOCs (残留移動性有機化合物) に該当
- ●タイヤ等のゴム製品に用いられる 加硫促進剤
- ●製造輸入量:1000~2000 t (2018年度)
- ●難分解性、水生生物に対する急性毒性
- ●SchulzeによるPMOCsの優先順位付け
 - →高頻度検出、調査事例が乏しい
 - →優先度高い

S. Schulze et al. / Water Research 153 (2019) 80-90

先行研究によるDPG-CI反応

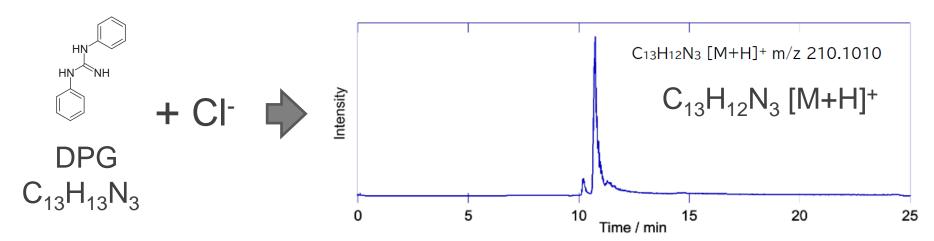
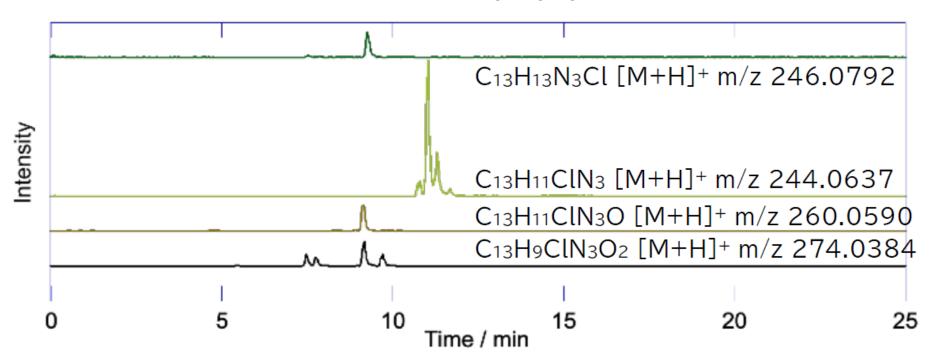


Fig. 1 Schematic representation of DPG transformation products. This figure was cited from BJ. Sieira et al. J. Hazard. Mater., 385, 121590 (2020)

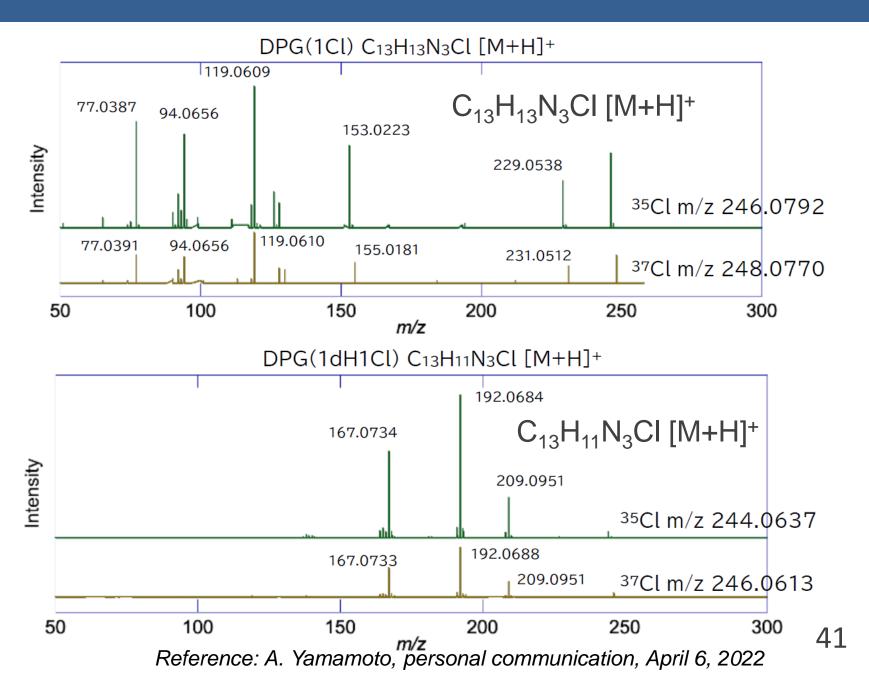
38

我々によるDPG-CI反応

✓ 共同研究者の山本が 45 µM DPG水溶液を 85 µM NaClO で塩素処理し、LC-QTOFMS (Sciex, X500R) 測定.

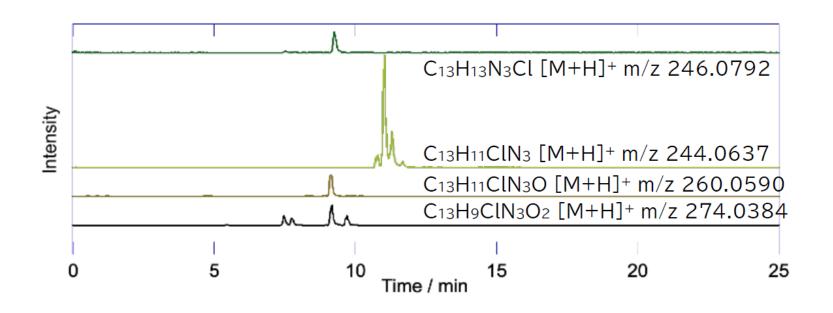


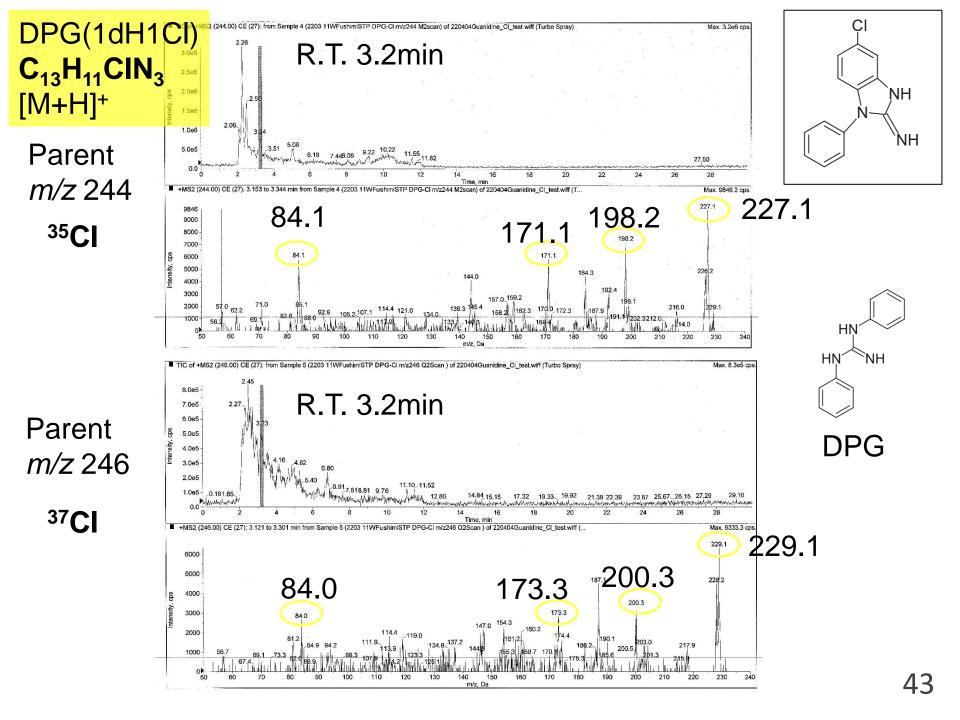
✓ 下記反応が起こっていると推定された


DPG-CI 検出シグナルのアサイン

- ✓ これらの構造に水酸基や塩素原子が付加すると考え、検出されているシグナルをアサインした
- ✓ 山本により下記のDPG-CIがアサインされた

DPG: 1,3-diphenylguanidine C₁₃H₁₃N₃

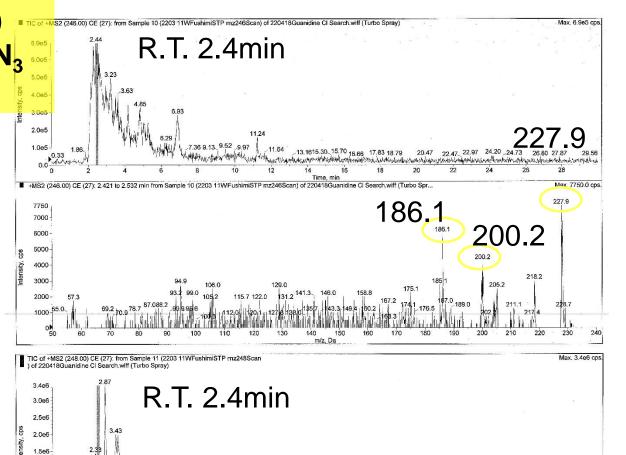


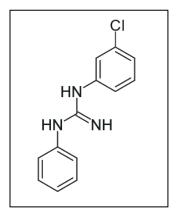

DPG-CI 検出シグナルのMSスペクトル

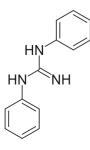
LC-MS/MSによるDPG-CIの探索

- ✓ アサインされたDPG-CIのm/zを元に、LC-MS/MS (Sciex, TQ4500) (product ion scan) を用いてDPG-CIの探索を行った.
- ✓ Precursors : *m/z* 244(+2), 246 (+2), 260 (+2), 274 (+2)
- ✓ 同一Retention Timeで同じm/z (あるいは2違い) のピークを探索
- ➤ それらのピーク強度比が 3:1であれば, DPG-CI の可能性が高い

DPG(1CI) - C₁₃H₁₃CIN₃ [M+H]+

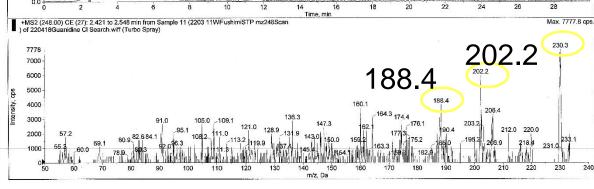

Parent m/z 246

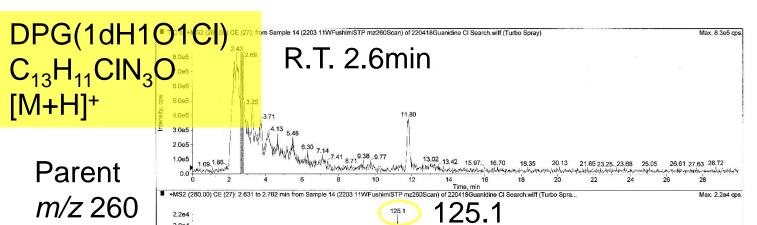

35C

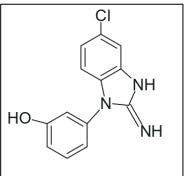

Parent *m/z* 248

³⁷CI

1.0e6 -

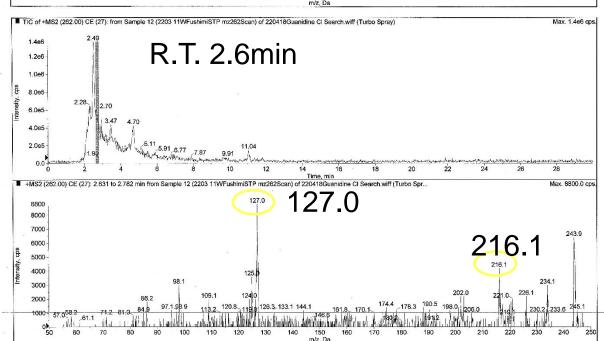





DPG

230.3

11.79



35**C**

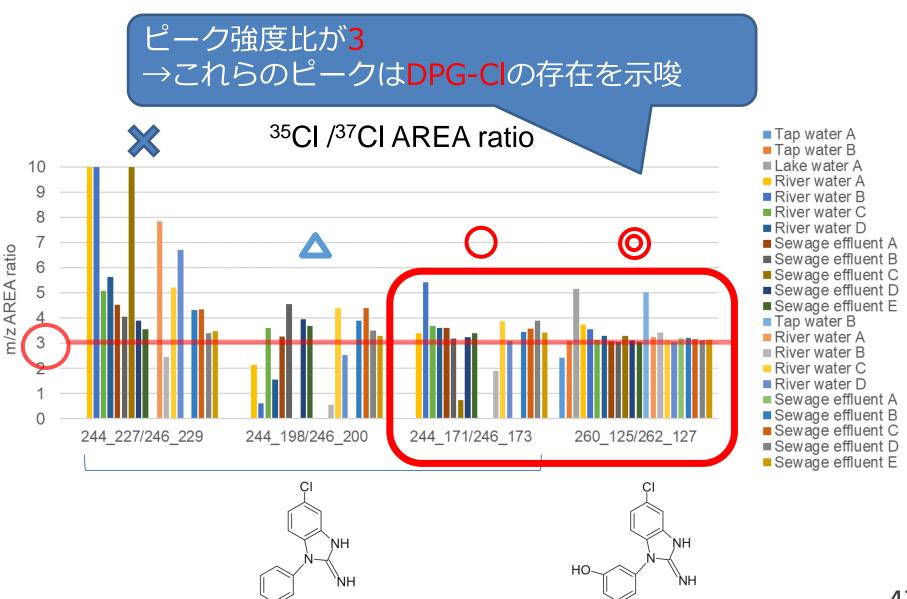
2.0e4 1.5e4 214.3 1.0e4 242.1 5000.0 79.1 86.0 1102.1 104.9 17.0 140.1 151.2 164.4 170.9 1 164. 120 130

Parent m/z 262

37**C**|

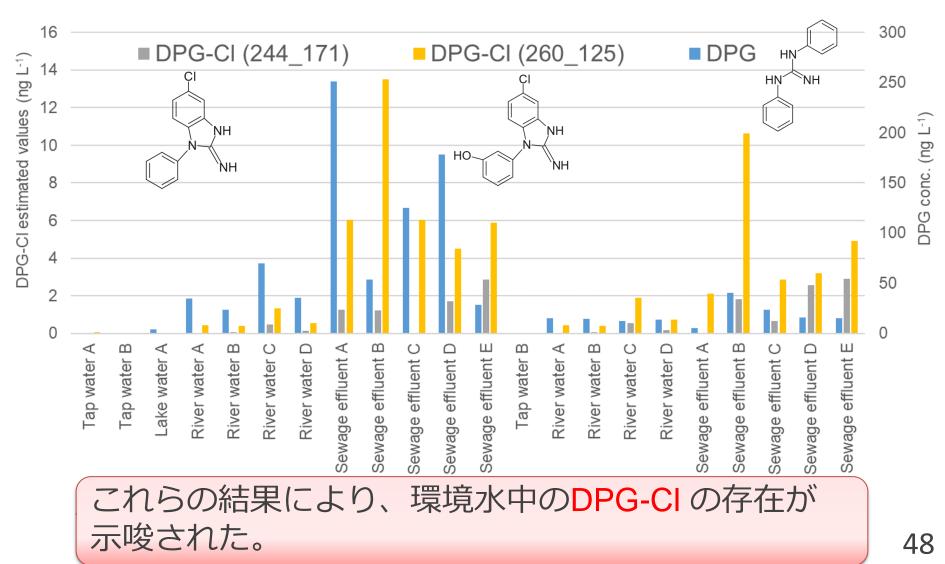
Product Ion Scan結果 (LC-MS/MS)

Precursors	Precursors (<i>m/z</i>)	R.T. (min)	Products (<i>m/z</i>)
DPG(1dH1Cl) C ₁₃ H ₁₁ ClN ₃ [M+H] ⁺	244 (³⁵ Cl)	3.2	171.1, 198.2, 227.1
	246 (³⁷ Cl)	3.2	173.3, 200.3, 229.1
DPG(1CI) C ₁₃ H ₁₃ CIN ₃ [M+H] ⁺	246 (³⁵ Cl)	2.4	186.1, 200.2, 227.9
	248 (³⁷ Cl)	2.4	188.4, 202.2, 230.3
DPG(1dH1O1CI) C ₁₃ H ₁₁ CIN ₃ O [M+H] ⁺	260 (³⁵ Cl)	2.6	125.1, 2 4.3
	262 (³⁷ Cl)	2.6	127.0, 216.

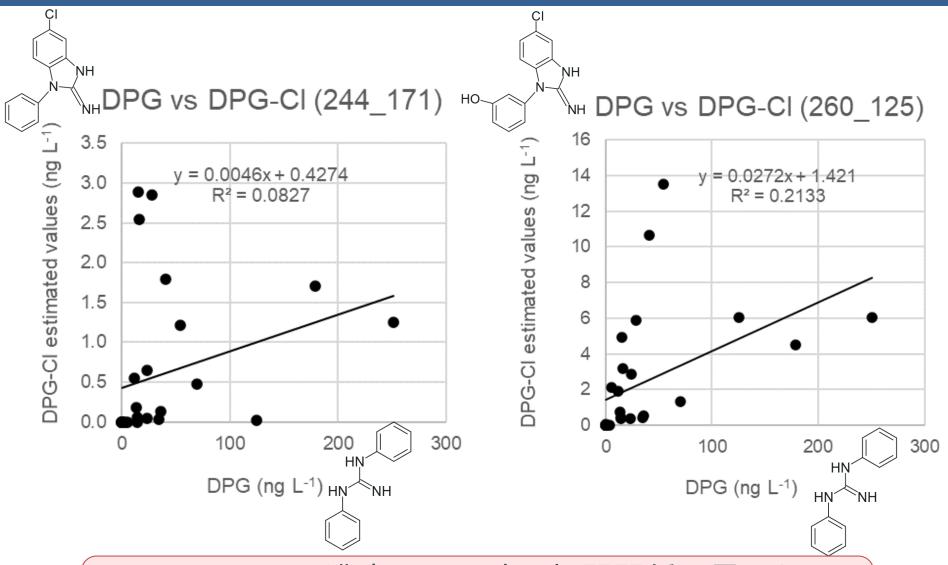

No peak

上記のSRMペアについて下水試料を分析し、ピーク強度比3 (^{35}CI : $^{37}CI = 3:1$) について探索した。

Precursors	Precursors (<i>m/z</i>)	R.T. (min)	Products (<i>m/z</i>)
DPG(1dH1Cl) C ₁₃ H ₁₁ ClN ₃	244 (³⁵ Cl)	3.2	171.1, 198.2, 227.1
	246 (³⁷ Cl)	3.2	173.3, 200.3, 229.1
DPG(1dH1O1CI) C ₁₃ H ₁₁ CIN ₃ O	260 (³⁵ Cl)	2.6	125.1
	262 (³⁷ Cl)	2.6	127.0


上記のSRMペアについて淀川試料の分析を実施した。

淀川試料のDPG-CI探索(LC-MS/MS)



淀川試料のDPG-CI探索(LC-MS/MS)

DPG-CI の感度はDPG と同一と想定し, DPG標準液を用いてDPG-CI 推定値を算出した。

淀川試料のDPGとDPG-CIの相関

DPG とDPG-CI 濃度には明確な相関関係は見られなかった

まとめ

- ✓ LC-QTOFMS及びLC-MS/MSを用いてDPG-CIの探索を実施
- ✓ 先行研究でDPG-CI反応が示されたが、我々がDPG-CI反応を実施 し、LC-QTOFMS測定したところ、先行研究とは異なる反応機構を 推定
- ✓ LC-QTOFMSで検出されたシグナルから複数のDPG-CIをアサイン
- ✓ LC-MS/MS (Product Ion Scan) を用いて環境試料中のDPG-CI探索 を実施
- ✓ ピーク強度比3 (35Cl: 37Cl = 3:1) について探索し, 2ペアのSRMを DPG-CIと推定。環境水中のDPG-CIの存在を示唆。
- ✓ 今後は NMRを用いて DPG-CIの構造解析を進める予定

謝辞

本研究は、


JSPS 科研費 JP20K12214 の助成を受けて実施しました。 ここに感謝の意を表します。

DPG-CI was named according to the following rules

- ✓ Dehydrogenation and cyclization at one place ->1dH
- √Oxygen atom is added at one place ->10
- ✓ Chlorine atom is added at one place -> 1Cl

PCDD/Fs分析におけるポリ塩素化ジフェニルエーテルの妨害とその除去に関する検討

地方独立行政法人北海道立総合研究機構 産業技術環境研究本部 エネルギー・環境・地質研究所 環境保全部 リスク管理グループ 主査 姉崎克典

ダイオキシン類分析における塩素化ジフェニルエーテルの影響

塩素化ジフェニルエーテ ル

ポリ塩化ジベンゾフラ

HxDPE HpDPE O_{C} **DPF**

塩素が2つ抜けると質量数が同じに

排ガスや土壌・底質試料で前処理で取り切れず、 PCDFのクロマトに影響が出ている事例が散見

HxDPE(6塩素化

DPE)

HpDPE(7塩素化

DPE)

DPE)

TeCDF(4塩素化フラ ン)

PeCDF(5塩素化フラ

OcDPE リテンションタイムがほぼ同じ領域を化フラ

ン)

実験方法

試料

北海道内で採取した湖沼底質(A湖、S湖) 2022年度第7回 MLAP 技能試験試料(河川底質)

底質

抽出

トルエンでのソックスレー抽出(16h) or ASE(トルエン、150℃ 静置15分 サイクル2)

前処理

硫酸処理+還元銅処理+多層カラム処理

— PCDFsクリーンアップSP添加

分取

活性炭分散シリカゲル処理(1g)

試料をチャージ後30分静置し溶出

Fr1: ヘキサン 40mL

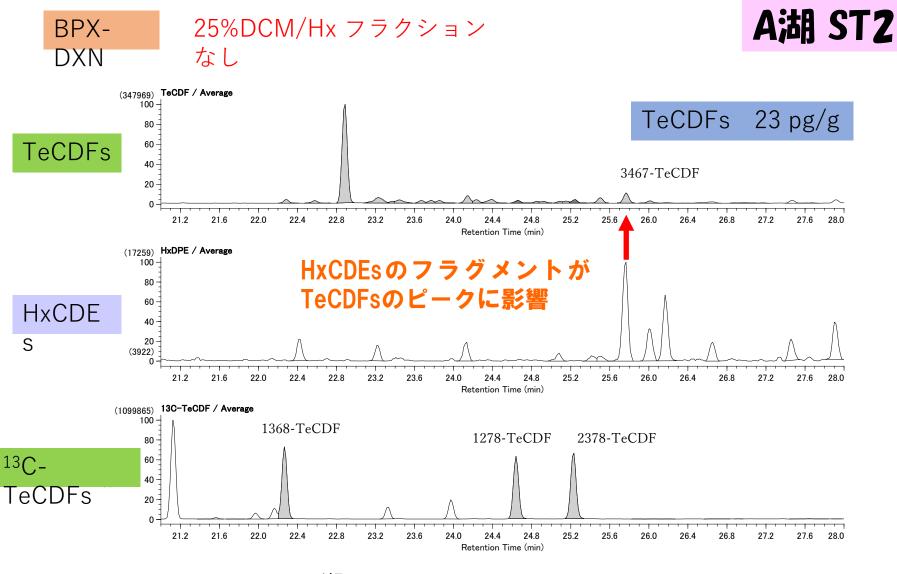
Fr2: 25%ジクロロメタン/ヘキサン 65mL(有・

無)

Fr3: 活性炭部をカイロで保温し、トルエン 250mL

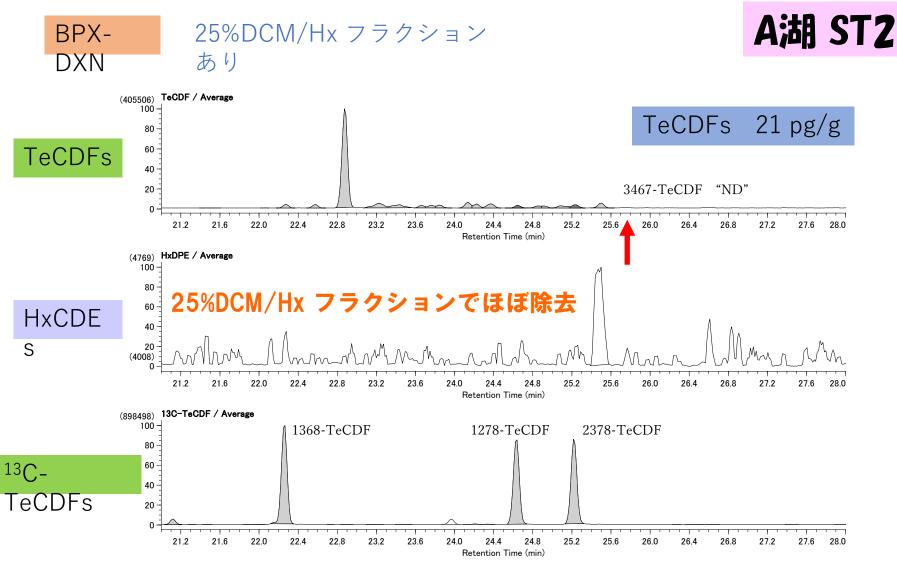
実験方法

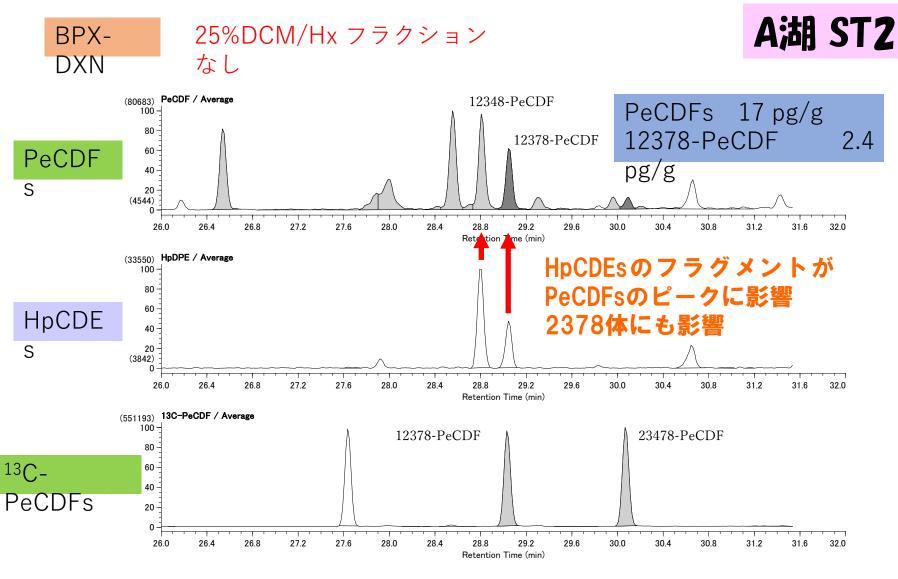
(つづき) PCDFsシリンジSP添加 濃縮 25µLののノナン溶液 HRGC/HRMS測定 BPX-DXN 及び RH12ms TeCDFs — HxDPE


TeCDFs — HxDPE PeCDFs — HpDPE HxCDFs — O c DPE

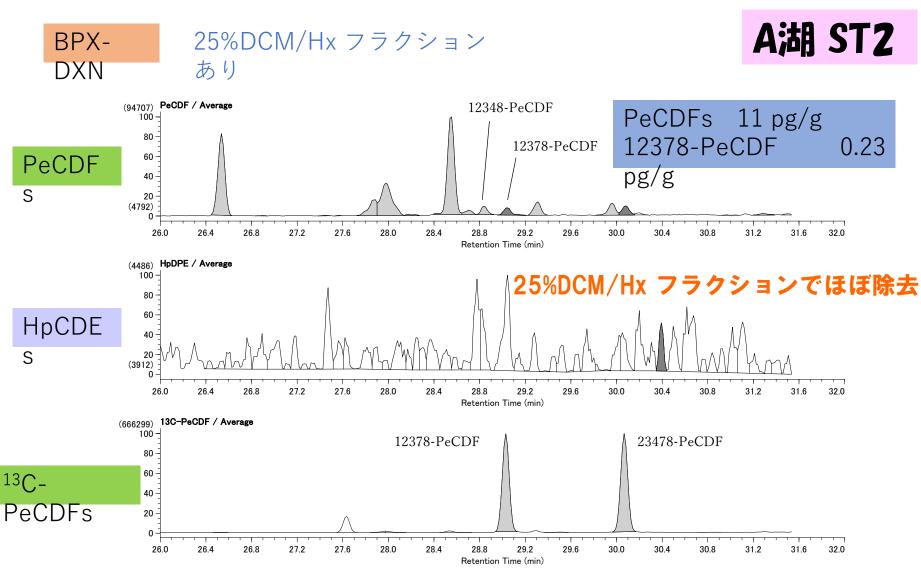
それぞれのクロマトグラムを比較 して、PCDEの影響を目視

PCDEのフラグメントの影響が認められる場合は、定量値への影響を検討

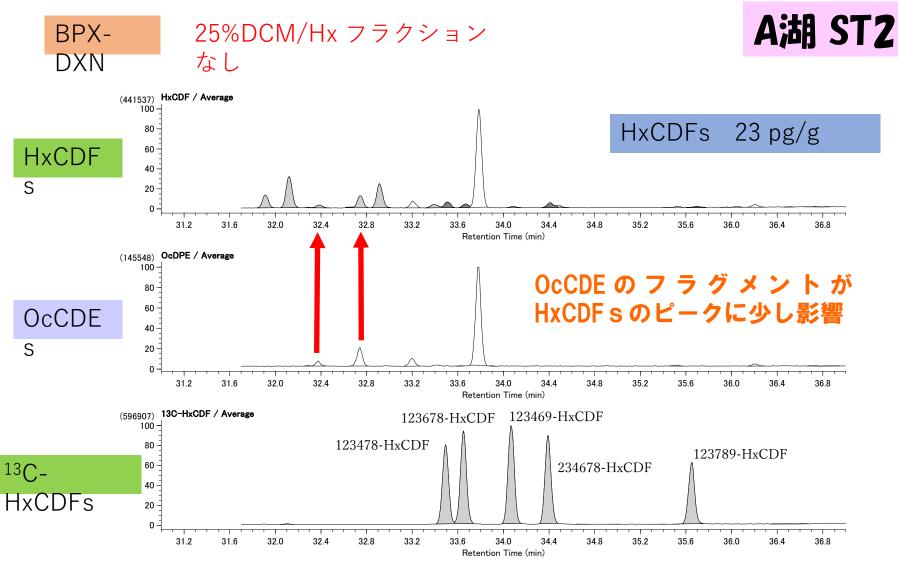




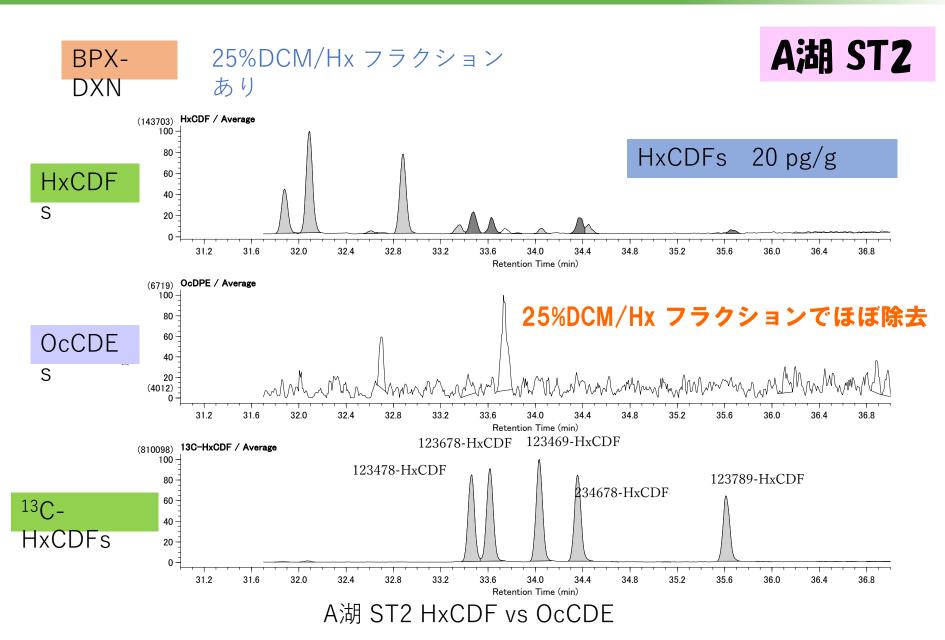
A湖 ST2 TeCDF vs HxCDE

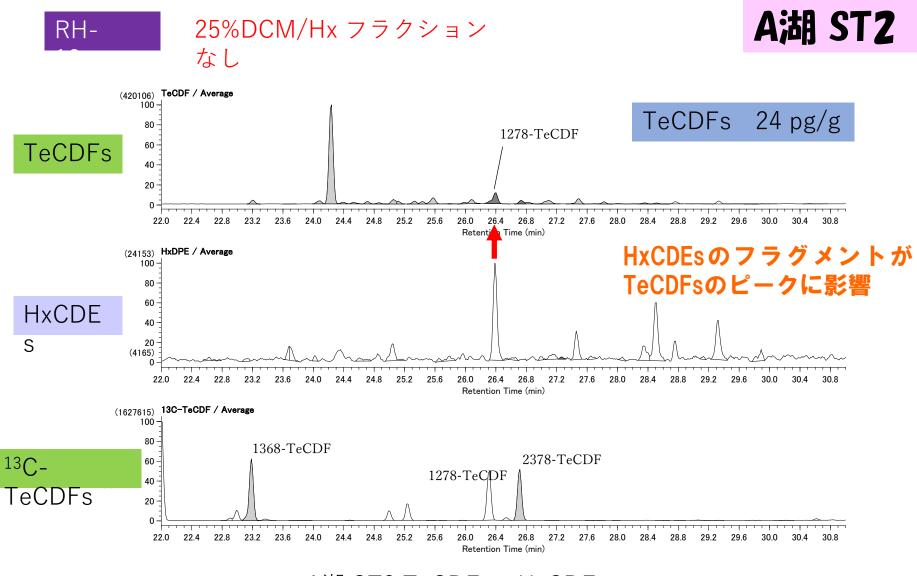


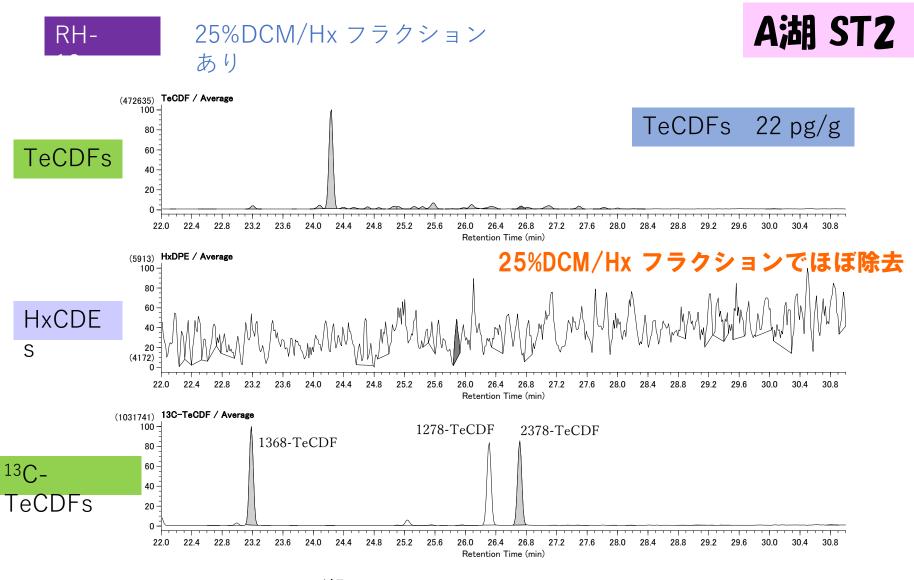
A湖 ST2 PeCDF vs HpCDE

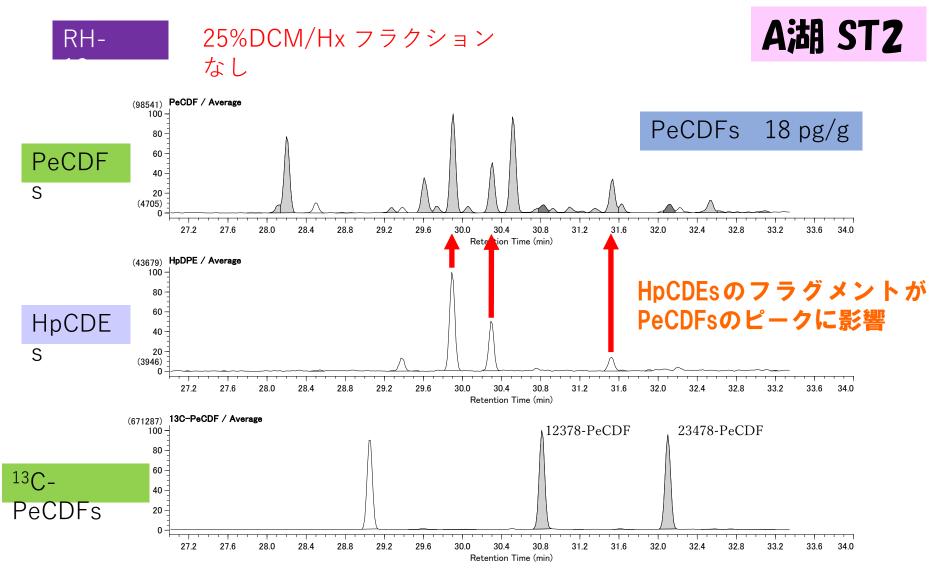


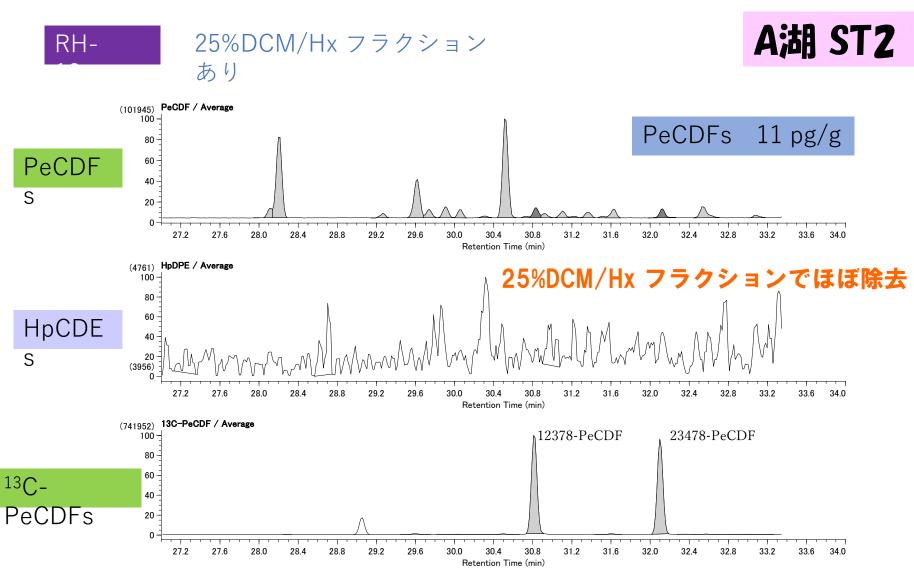
A湖 ST2 PeCDF vs HpCDE



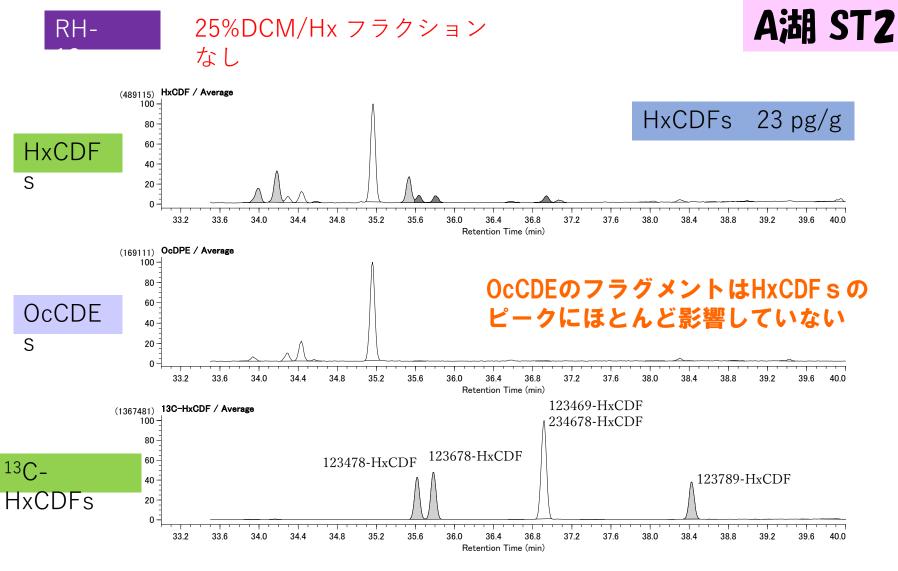

A湖 ST2 HxCDF vs OcCDE



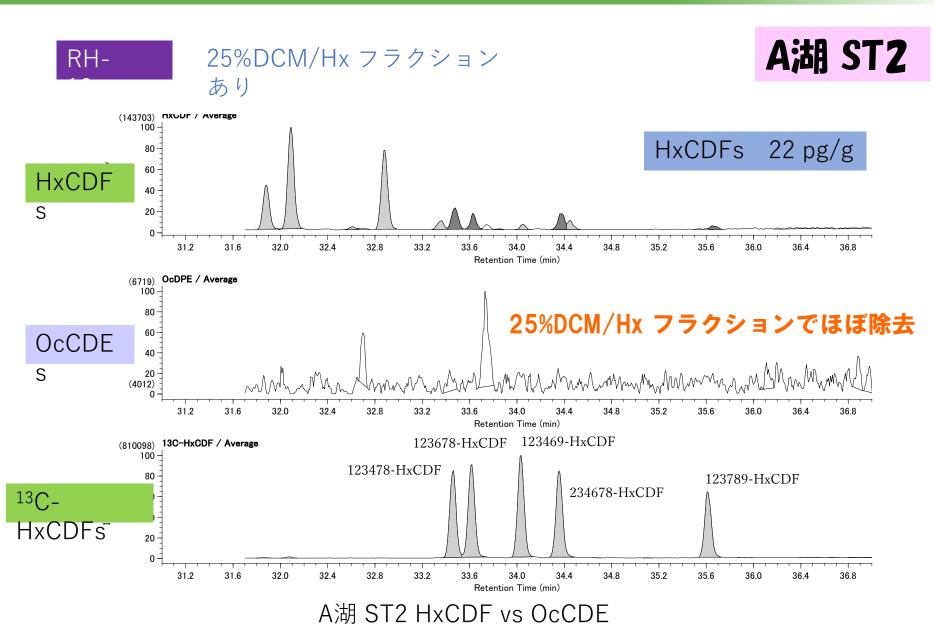




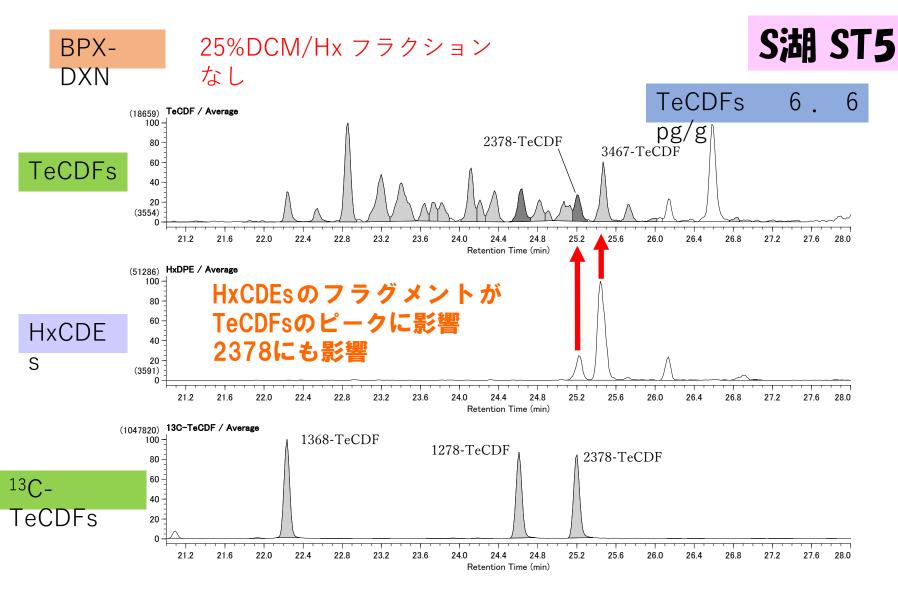
A湖 ST2 PeCDF vs HpCDE



A湖 ST2 PeCDF vs HpCDE

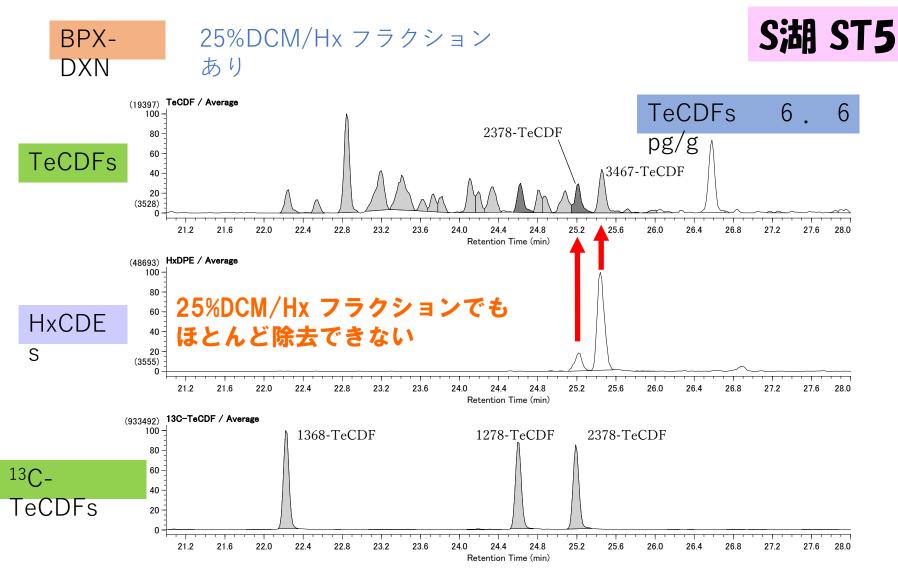


A湖 ST2 HxCDF vs OcCDE

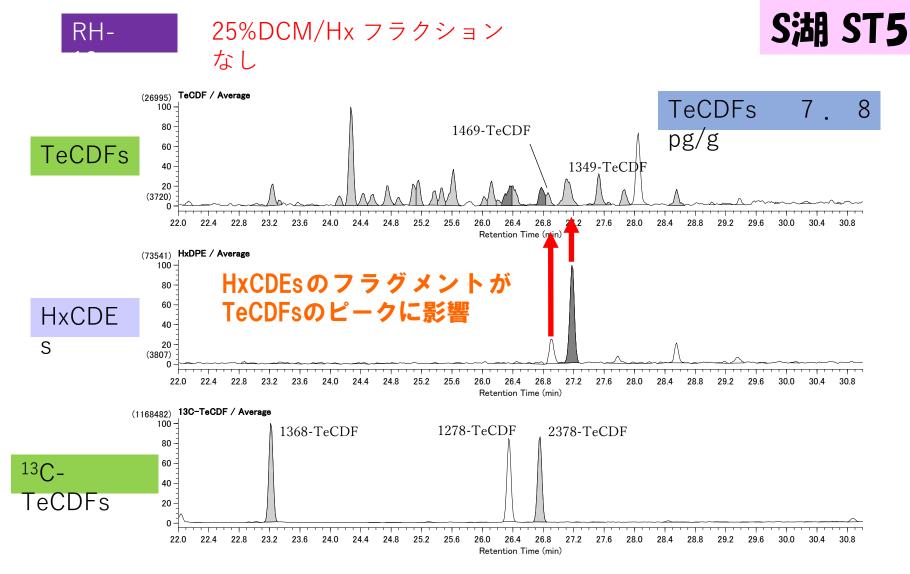


	BPX-DXN 25%DCM Frなし	BPX-DXN 25%DCM Frあり	RH12ms 25%DCM Frなし	RH12ms 25%DCM Frあり
2,3,7,8-TeCDF	0.46	0.50	0.50	0.45
TeCDFs	23	21	24	22
12378-PeCDF	2.4	0.23	0.29	0.30
23478-PeCDF	_	_	0.43	0.32
PeCDFs	17	11	18	11
123478-HxCDF	1.2	1.4	1.5	1.5
123678-HxCDF	0.64	0.76	_	_
234678-HxCDF	1.1	0.90	_	_
HxCDFs	23	20	23	22

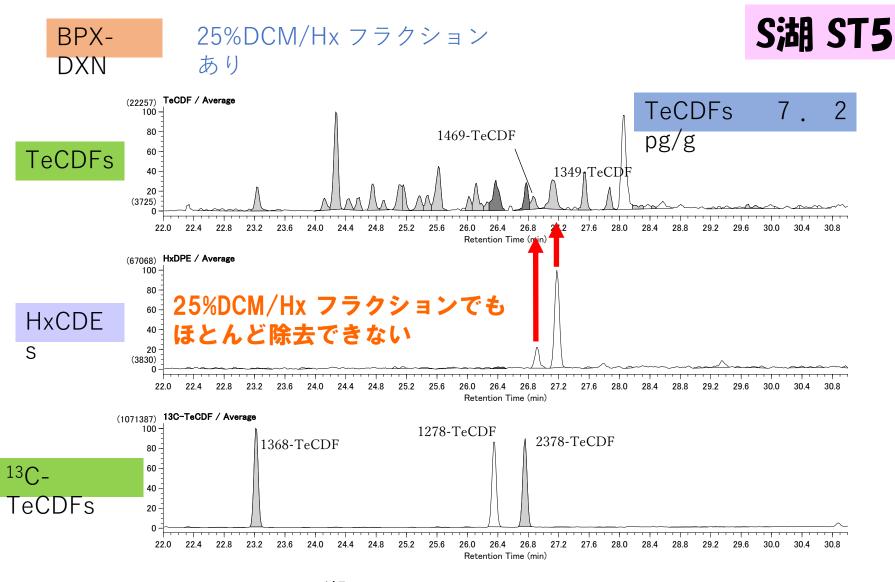
A湖 ST2 定量結果



S湖 ST5 TeCDF vs HxCDE

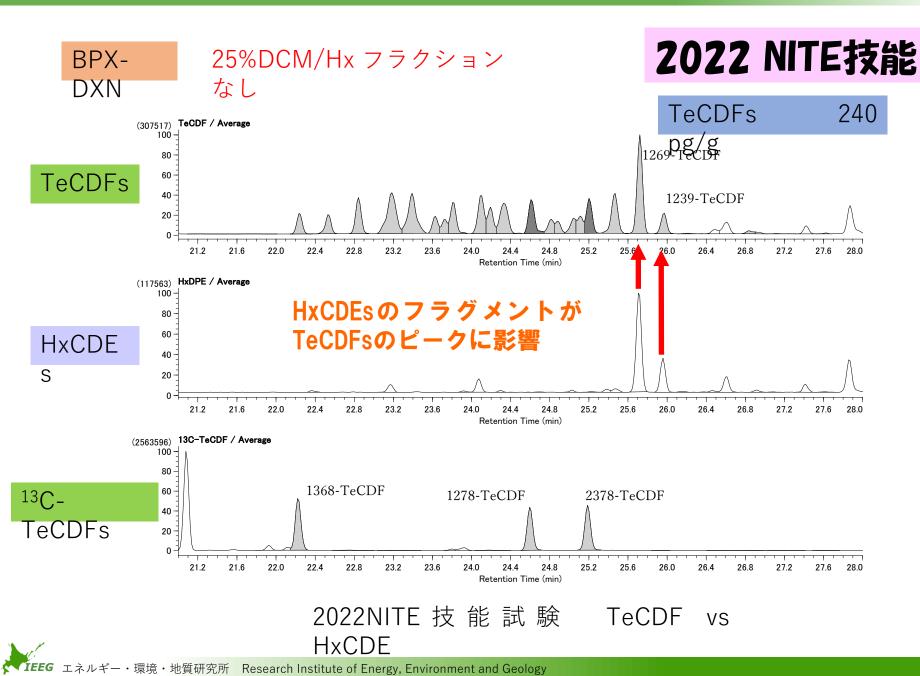


S湖 ST5 TeCDF vs HxCDE

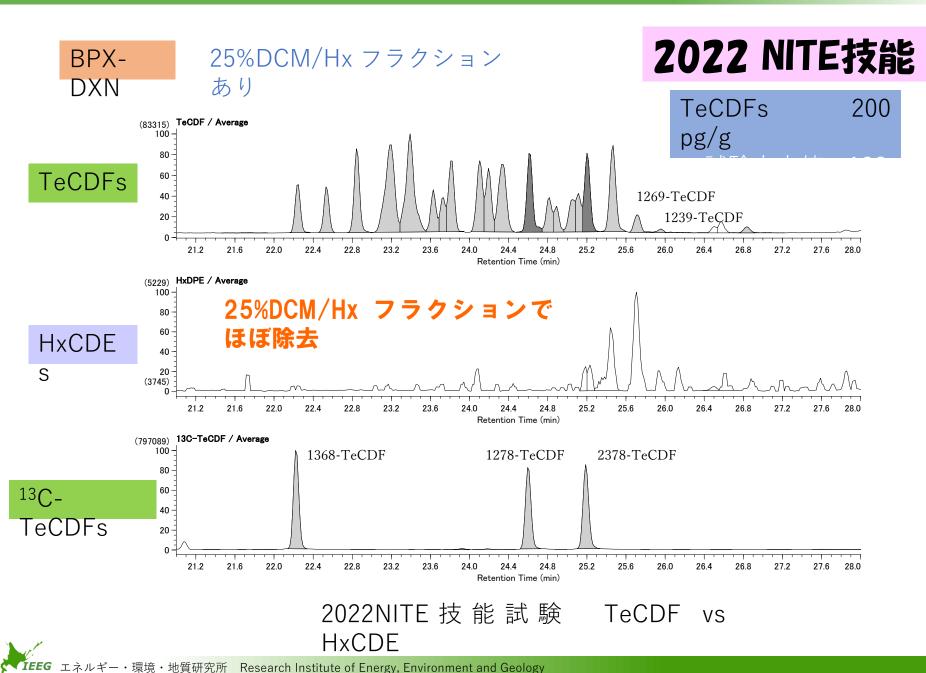


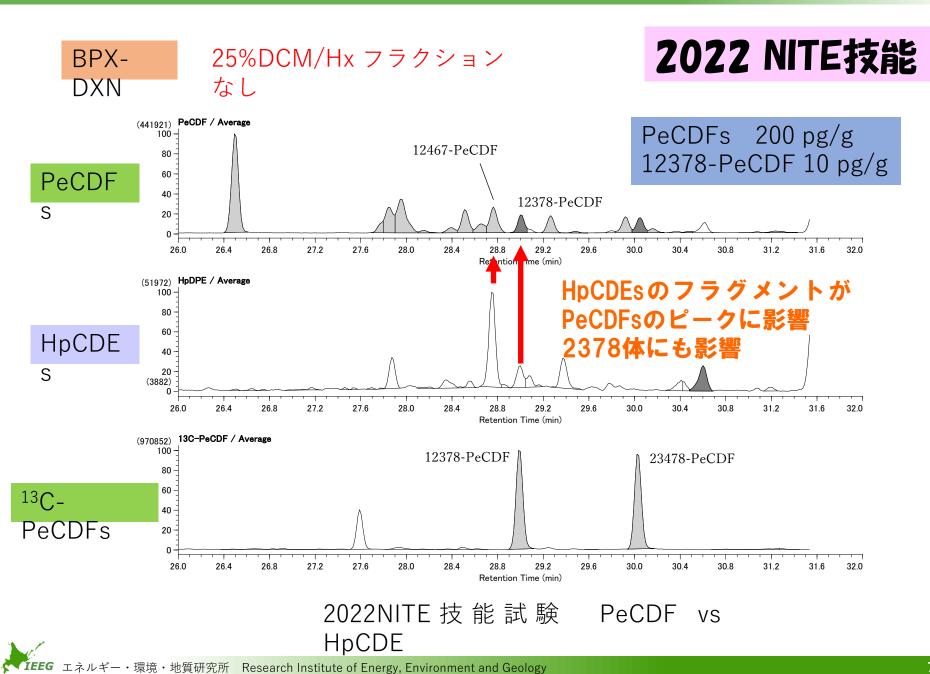
S湖 ST5 TeCDF vs HxCDE

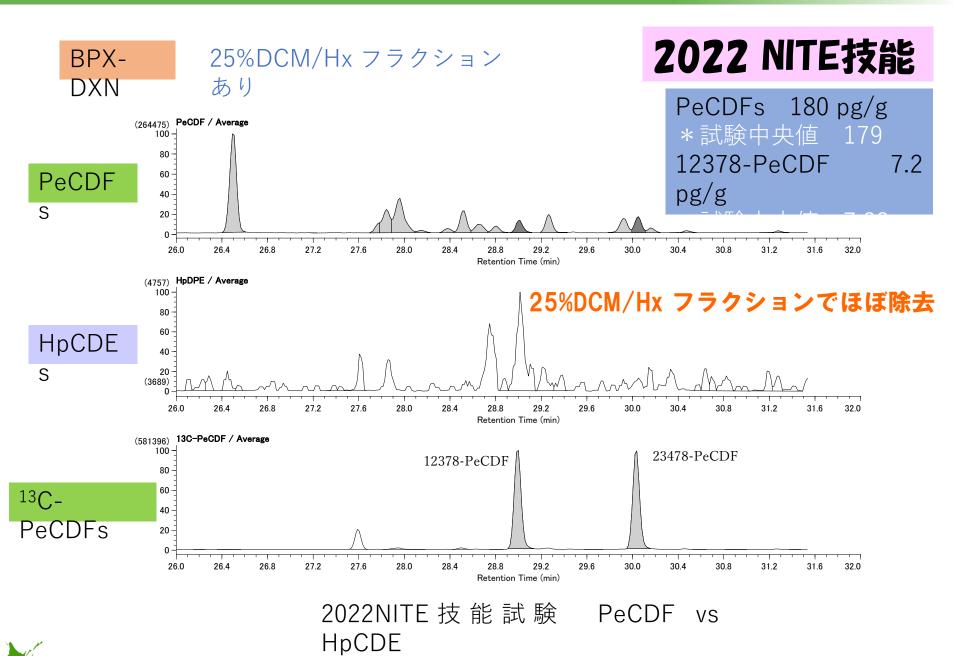
A湖 ST2 TeCDF vs HxCDE



	BPX-DXN 25%DCM Frなし	BPX-DXN 25%DCM Frあり	RH12ms 25%DCM Frなし	RH12ms 25%DCM Frあり
2,3,7,8-TeCDF	0.3	0.4	0.3	0.3
TeCDFs	6.6	6.6	7.8	7.2
12378-PeCDF	0.3	0.1	0.3	0.3
23478-PeCDF	-	-	0.2	0.2
PeCDFs	4.0	3.8	4.6	4.7
123478-HxCDF	0.4	0.4	0.5	0.2
123678-HxCDF	0.3	0.2	-	-
234678-HxCDF	0.3	0.4	-	-
HxCDFs	2.9	3.2	4.1	3.4


S湖 ST5 定量結果





80

	BPX-DXN 25%DCM Fr なし	BPX-DXN 25%DCM Fr あり	RH12ms 25%DCM Fr なし	RH12ms 25%DCM Fr あり	技能試験 中央値
2,3,7,8-TeCDF	12	13	14	13	12.6
TeCDFs	240	200	240	200	188
12378-PeCDF	10	7.2	8.5	7.4	7.88
23478-PeCDF	-	-	10	8.7	9.12
PeCDFs	200	180	210	180	179
123478-HxCDF	17	18	20	21	18.2
123678-HxCDF	9.3	11	-	-	
234678-HxCDF	12	11	-	-	
HxCDFs	240	230	280	270	229

2022NITE技能試験 定量結果

まとめ

- ・塩素化ジフェニルエーテル(DPE)により、BPX-DXNのキャピラリーカラムでは、一部のPCDFの2,3,7,8体にフラグメントがかぶる
- ・RH-12キャピラリーカラムでは、2,3,7,8体にかぶることはないが、その他のコンジェナーにかぶる
- ・そのため、とちらのキャピラリーカラムを用いても、精確な 同族体濃度を把握できない場合がある。
- ・活性炭シリカゲルで、25%DCM/Hxフラクションに大部分のDPEは移行するので、PCDFとの分離は可能
- しかし、HxDPEの一部は除去できず、TeCDFsのコンジェ ナーにかぶる場合がある。

確実な除去方法はあるか 今主流の自動前処理装置を使った場合はどうなるか・・・ HPLCは・・・ アルミナ処理は・・・

今後ともよろしくお願いいたします。

地方独立行政法人 北海道立総合研究機構 産業技術環境研究本部 エネルギー・環境・地質研究所

http://www.hro.or.jp/

環境保全部 リスク管理グループ 姉崎克典 TEL 011-747-3521 FAX 011-747-3254 E-mail to anezaki@hro.or.jp

UoA RTI Platformの保持指標変換法で算出可能な LC保持指標の検討

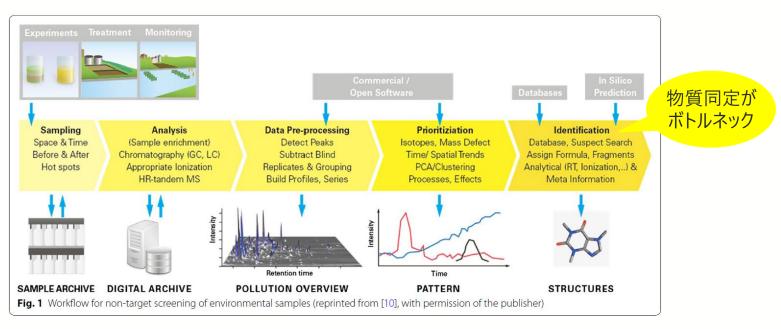
○松神 秀徳(国立環境研究所) 頭士 泰之(産業技術総合研究所) 江口 哲史(千葉大学) 浅川 大地(大阪市立環境科学研究センター) 橋本 俊次(国立環境研究所)

ノンターゲット分析の援用による環境モニタリングと化学物質管理の検討

Hollender et al. Environ Sci Eur (2019) 31:42 https://doi.org/10.1186/s12302-019-0225-x Environmental Sciences Europe

DISCUSSION Open Access

High resolution mass spectrometry-based non-target screening can support regulatory environmental monitoring and chemicals management



Juliane Hollender^{1,2*}, Bert van Bavel³, Valeria Dulio⁴, Eivind Farmen⁵, Klaus Furtmann⁶, Jan Koschorreck⁷, Uwe Kunkel⁸, Martin Krauss⁹, John Munthe¹⁰, Martin Schlabach¹¹, Jaroslav Slobodnik¹², Gerard Stroomberg¹³, Thomas Ternes¹⁴, Nikolaos S. Thomaidis¹⁵, Anne Togola¹⁶ and Victoria Tornero¹⁷

Source: Hollender et al. Environ. Sci. Eur. 31-42, 2019

環境ノンターゲット分析のためのワークフローの開発・応用

Source: Hollender et al. Environ. Sci. Eur. 31, 42, 2019

物質同定の課題

- クロマトグラフィーの保持指標は、物質同定における偽陽性の低減に資する有用な情報のひとつである。
- ガスクロマトグラフィーでは、「Kovats' retention index」が保持指標の標準として 普及し、偽陽性を特定するための強力なツールとして利用されている。
- 液体クロマトグラフィー(LC)で提案されている保持指標は、現在のところ広く普及するに至っておらず、環境分野への開発・応用が強く望まれている。

アテネ大学(UoA)から新たなLC保持指標の提案 (Nikolaos S. Thomaidis retention index)

pubs.acs.org/ac Article

Development and Application of Liquid Chromatographic Retention Time Indices in HRMS-Based Suspect and Nontarget Screening

Reza Aalizadeh, Nikiforos A. Alygizakis, Emma L. Schymanski, Martin Krauss, Tobias Schulze, María Ibáñez, Andrew D. McEachran, Alex Chao, Antony J. Williams, Pablo Gago-Ferrero, Adrian Covaci, Christoph Moschet, Thomas M. Young, Juliane Hollender, Jaroslav Slobodnik, and Nikolaos S. Thomaidis*

Source: Aalizadeh et al. Anal. Chem., 93, 11601-11611, 2021

保持指標への変換を容易に行うことができるプラットフォーム(UoA RTI Platform)を構築。

適用範囲は十分に解明されていない可能性がある。

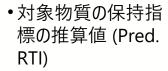
研究の目的

UoA RTI Platformの保持指標変換法で算出可能なLC保持指標 Nikolaos S. Thomaidis retention index の検討

UoA RTI Platformによる保持指標変換法

- •検量物質の保持指標 (Assigned RTI)
- •検量物質の保持時間の実測値 (Exp. T_R)
- 対象物質の保持時間の実測値 (Exp. T_R)
- •対象物質の分子構 造情報 (SMILES)

Retention Time Indices Platform (Log-in Page)


Welcome to Retention Time Indices (RTI) platform. RTI platform is created to harmonize retention time data obtained from liquid chromatography high resolution mass spectrometry (LC-HRMS). RTI website enables to get use of retention time data during suspect and non-target screening. It can be used to build the calibration curve for any RPLC condition or to calculate the experimental and predicted RTIs. In addition, experimental RTIs from different LC conditions can be directly compared through multiple comparison procedure to remove false positive identifications.

RTI platform is developed at National and Kapodistrian University of Athens. It is at present freely accessible to all registered users and members of NORMAN Association.

For more information how to use RTI platform, contact Dr. Reza Aalizadeh (realizadeh@chem.uoa.gr).

In case, you encounter any problems with log-in, please, contact UOA-RTI team at trams@chem.uoa.gr.

- •保持指標の検量線
- 対象物質の保持指標の実測値 (Exp. RTI)

対象物質の保持指標の実測値と推算値の比較結果

検量物質と対象物質の保持時間の実測値を取得する必要がある。

Source: http://rti.chem.uoa.gr/

保持指標変換用検量物質

ESI-: 17	calibrants	ESI+: 17 calibrants		
✓ Amitrole	✓ Phenytoin	✓ Guanylurea	✓ Dichlorvos	
✓ Benzoic acid	Flamprop (not available)	✓ Amitrole	✓ Tylosin	
✓ Acephate	✓ Benodanil	✓ Histamine	✓ TCMTB	
✓ Salicylic acid	✓ Dinoterb	✓ Chlormequat	✓ Rifaximin	
✓ Simazine 2-Hydroxy	✓ Inabenfide	✓ Methamidophos	✓ Spinosad A	
✓ Tepraloxydim Peak1	✓ Coumaphos	✓ Vancomycin	Emamectin (not available)	
✓ Bromoxynil	✓ Triclosan	✓ Cefoperazone	✓ Avermectin	
✓ MCPA	✓ Avermectin	✓ Trichlorfon	✓ Nigericin	
✓ Valproic acid	✓ Salinomycin	✓ Butocarboxim	✓ Ivermectin	

UoA RTI Platform指定の検量物質について、保持時間の実測値を取得する。

検討対象物質

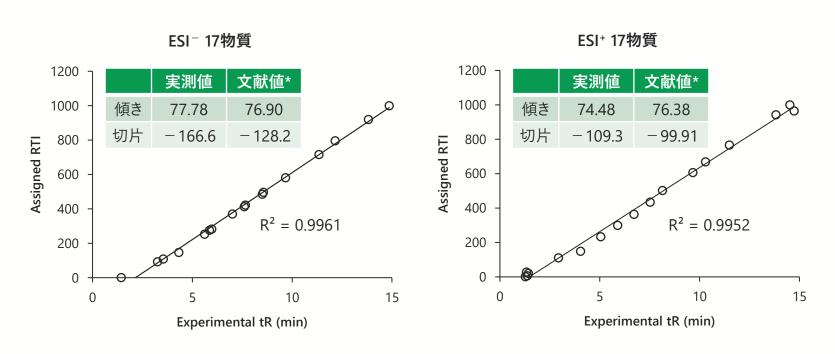
ESI ⁻ : 69 compounds	ESI+: 48 compounds
有機リン酸エステル類:1物質	有機リン酸エステル類:31物質
• 含塩素有機リン酸エステル類:2物質	・ 含塩素有機リン酸エステル類:5物質
• 含臭素有機リン酸エステル類:2物質	・ 含臭素有機リン酸エステル類:2物質
• 有機臭素化合物 (BFR): 9物質	• 有機臭素化合物 (BFR): 1物質
有機フッ素化合物 (PFAS):54物質	• 有機フッ素化合物 (PFAS):5物質
• その他:1物質	• その他:5物質

様々な性状の化学種を対象に保持時間の実測値を取得する。

測定メソッド (1/2)

Method	Column	Mobile phase			
Main LC	Thermo Fisher Scientific Acclaim RSLC C18 2.1 × 100 mm, 2.2 μm	ESI ⁻ : H ₂ O/MeOH with 5 mM CH ₃ COONH ₄ ESI ⁺ : H ₂ O/MeOH with 5 mM HCOONH ₄ & 0.01% HCOOH			
LC1-A	N/	ESI [−] /ESI ⁺ : H ₂ O/MeOH with 0.1% HCOOH			
LC1-N	Waters ACQUITY UPLC BEH C18 2.1×100 mm, 1.7 μm	ESI ⁻ /ESI ⁺ : H ₂ O/MeOH with 5 mM CH ₃ COONH ₄			
LC1-B	2.1 × 100 mm, 1.7 μm	ESI ⁻ /ESI ⁺ : H ₂ O/MeOH with 0.5% NH ₄ OH			
LC2-A		ESI [−] /ESI ⁺ : H ₂ O/MeOH with 0.1% HCOOH			
LC2-N	Waters XBridge BEH C18 3.0×50 mm, 2.5 μm	ESI ⁻ /ESI ⁺ : H ₂ O/MeOH with 5 mM CH ₃ COONH ₄			
LC2-B	3.0 × 30 ΠΠΙ, 2.3 μΠ	ESI ⁻ /ESI ⁺ : H ₂ O/MeOH with 0.5% NH ₄ OH			
LC3-N	Waters ACQUITY UPLC BEH Shield RP18 2.1×50 mm, 1.7 μm	ESI ⁻ /ESI ⁺ : H ₂ O/MeOH with 5 mM CH ₃ COONH ₄			

保持時間の実測値は、UoAのMain LC条件 (共通メソッド) と、 移動相pH・カラムが異なるLC条件 (インハウスメソッド) で測定する。


測定メソッド (2/2)

Method	Mobile phase	LC gradient time program
Main LC 共通	ESI ⁻ : H ₂ O/MeOH with 5 mM CH ₃ COONH ₄ ESI ⁺ : H ₂ O/MeOH with 5 mM HCOONH ₄ & 0.01% HCOOH	$0 \rightarrow 1 \text{ min, } 1 \rightarrow 1\% \text{ (0.2} \rightarrow 0.2 \text{ mL/min)}$ $1 \rightarrow 3 \text{ min, } 1 \rightarrow 39\% \text{ (0.2} \rightarrow 0.2 \text{ mL/min)}$ $3 \rightarrow 14 \text{ min, } 39 \rightarrow 99.9\% \text{ (0.2} \rightarrow 0.4 \text{ mL/min)}$ $14 \rightarrow 16 \text{ min, } 99.9 \rightarrow 99.9\% \text{ (0.4} \rightarrow 0.48 \text{ mL/min)}$ $16 \rightarrow 16.1 \text{ min, } 99.9 \rightarrow 1\% \text{ (0.48} \rightarrow 0.2 \text{ mL/min)}$
LC1-A	ESI [−] /ESI ⁺ : H ₂ O/MeOH with 0.1% HCOOH	
LC1-N	ESI ⁻ /ESI ⁺ : H ₂ O/MeOH with 5 mM CH ₃ COONH ₄	
LC1-B	ESI ⁻ /ESI ⁺ : H ₂ O/MeOH with 0.5% NH ₄ OH	$0 \text{ min} \rightarrow 23.5 \text{ min, } 5\% \rightarrow 99\% \text{ (0.3} \rightarrow 0.3 \text{ mL/min)}$
LC2-A	ESI ⁻ /ESI ⁺ : H ₂ O/MeOH with 0.1% HCOOH	23.5 min \rightarrow 28.5 min, 99% \rightarrow 99% (0.3 \rightarrow 0.3 mL/min)
LC2-N	ESI ⁻ /ESI ⁺ : H ₂ O/MeOH with 5 mM CH ₃ COONH ₄	28.5 min \rightarrow 28.6 min, 99% \rightarrow 5% (0.3 \rightarrow 0.3 mL/min)
LC2-B	ESI ⁻ /ESI ⁺ : H ₂ O/MeOH with 0.5% NH ₄ OH	
LC3-N	ESI ⁻ /ESI ⁺ : H ₂ O/MeOH with 5 mM CH ₃ COONH ₄	

共通メソッドとインハウスメソッドは、それぞれ異なるグラジエントプログラムを設定している。

共通メソッドの保持指標変換用検量線

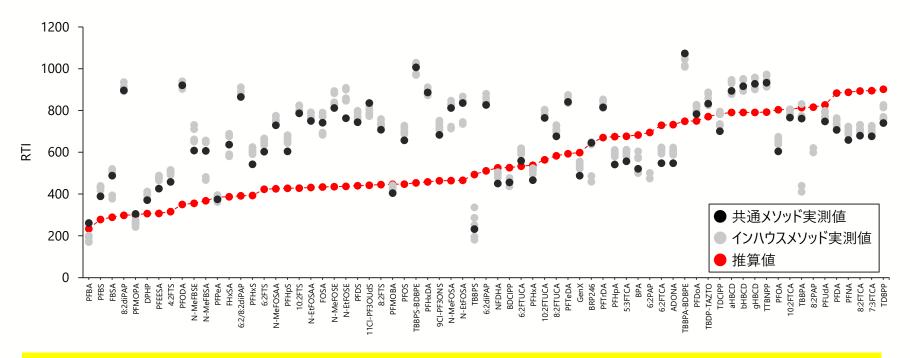
Thomaidisらの報告値と同等の傾きと切片が得られる。

*Source: Aalizadeh et al. Anal. Chem., 93, 11601-11611, 2021

インハウスメソッドの保持指標変換用検量線 (ESI-)

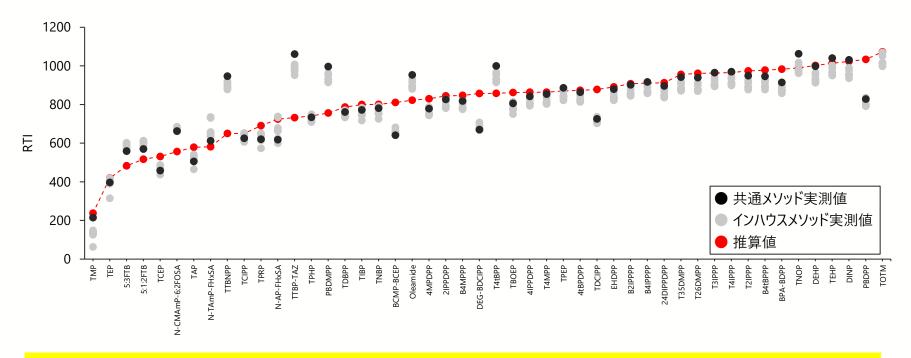
Method	Column	Mobile phase	Point	Slope	Intercept	Correlation coefficients
LC1-A		H ₂ O/MeOH with 0.1% HCOOH	10	44.17	- 146.2	0.875
LC1-N	ACQUITY UPLC BEH C18, 100 mm	H ₂ O/MeOH with 5 mM CH ₃ COONH ₄	17	41.52	-27.55	0.985
LC1-B	0.0, 100 11111	H ₂ O/MeOH with 0.5% NH ₄ OH	17	38.78	+45.00	0.947
LC2-A	XBridge BEH C18, 50 mm	H ₂ O/MeOH with 0.1% HCOOH	9	40.44	-46.64	0.942
LC2-N		H ₂ O/MeOH with 5 mM CH ₃ COONH ₄	17	39.97	-22.24	0.981
LC2-B	3.3, 33	H ₂ O/MeOH with 0.5% NH ₄ OH	17	37.91	+76.89	0.930
LC3-N	ACQUITY UPLC BEH Shield RP18, 50 mm	H ₂ O/MeOH with 5 mM CH ₃ COONH ₄	17	41.51	+36.95	0.964

中性から高pH (~11.54) の移動相に適用可能である。


インハウスメソッドの保持指標変換用検量線 (ESI+)

Method	Column	Mobile phase	Point	Slope	Intercept	Correlation coefficients
LC1-A		H ₂ O/MeOH with 0.1% HCOOH	16	39.28	-31.88	0.975
LC1-N	ACQUITY UPLC BEH C18, 100 mm	H ₂ O/MeOH with 5 mM CH ₃ COONH ₄	17	39.34	-37.86	0.970
LC1-B	0.0, 100 1	H ₂ O/MeOH with 0.5% NH ₄ OH	15	39.28	- 13.78	0.972
LC2-A	XBridge BEH C18, 50 mm	H ₂ O/MeOH with 0.1% HCOOH	16	39.30	-29.59	0.977
LC2-N		H ₂ O/MeOH with 5 mM CH ₃ COONH ₄	16	38.45	-44.17	0.972
LC2-B	G 1 G 7 G 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H ₂ O/MeOH with 0.5% NH ₄ OH	14	39.28	-21.38	0.979
LC3-N	ACQUITY UPLC BEH Shield RP18, 50 mm	H ₂ O/MeOH with 5 mM CH ₃ COONH ₄	16	40.78	- 21.57	0.968

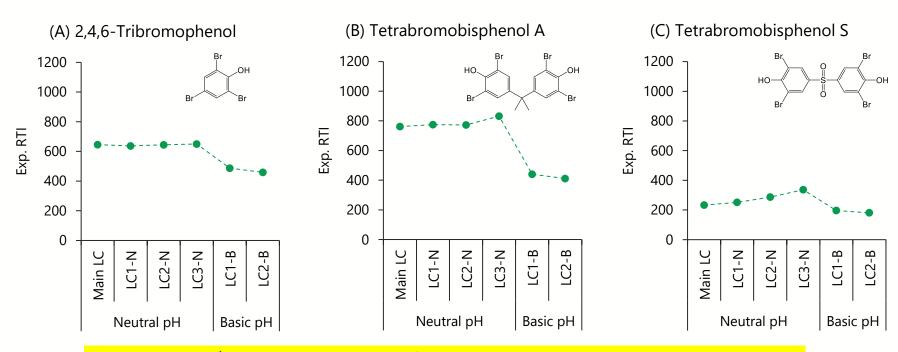
広範囲なpH (2.7~11.54) の移動相に適用可能である。


UoA RTI Platformで算出された保持指標の実測値と推算値 (ESI-)

ESI 対象物質の実測値の多くは、メソッド間のばらつきが小さく、推算値との乖離が大きい。

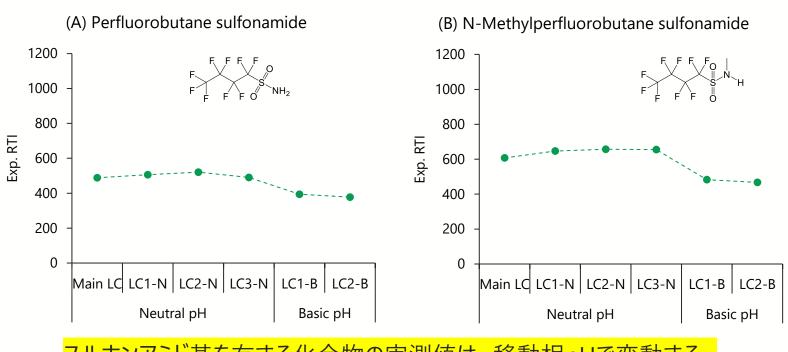
UoA RTI Platformで算出された保持指標の実測値と推算値 (ESI+)

ESI+対象物質の実測値の多くは、メソッド間のばらつきが小さく、推算値との乖離も小さい。

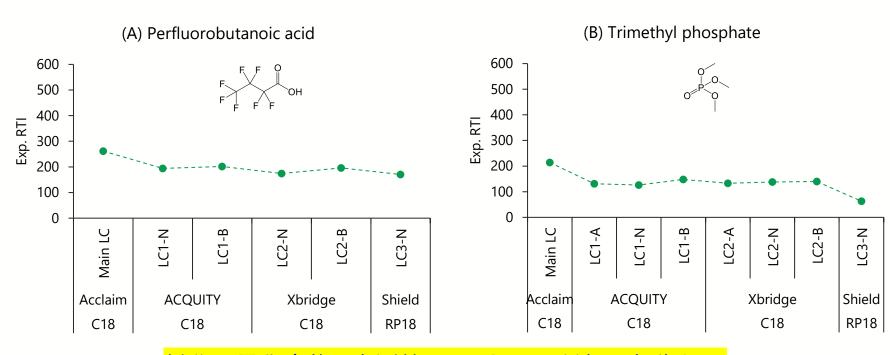

実測値のメソッド間のばらつき

Number of	Method	Number of	CV value			
compounds	Method	detections	<5%	5–10%	>10%	
60	Neutral pH	67	64	2	1	
69 compounds in ESI [–]	Basic pH	69	68	1	0	
III ESI	All methods	69	55	8	6	
	Acidic pH	48	48	0	0	
48 compounds	Neutral pH	48	45	1	2	
in ESI⁺	Basic pH	48	48	0	0	
	All methods	48	44	3	1	
114 compounds in total	All methods	114	96	11	7	

114物質中107物質は、変動係数が10%以下であり、メソッド間のばらつきが小さい。


実測値のメソッド間のばらつきの要因 (1/3)

フェノール性ヒドロキシ基を有する化合物の実測値は、移動相pHで変動する。


実測値のメソッド間のばらつきの要因 (2/3)

スルホンアミド基を有する化合物の実測値は、移動相pHで変動する。

実測値のメソッド間のばらつきの要因 (3/3)

低分子量化合物の実測値は、LCカラムの種類で変動する。

まとめ

- UoA RTI Platformの保持指標変換法で算出されるLC保持指標は、多くの化学種についてメソッド間のばらつきが小さい。そのため、物質同定に有用な保持指標となる可能がある。その一方で、化学種の性状によっては、メソッド間のばらつきが大きく、推算値と乖離が大きいことがある。
- 今回は化学種の性状と測定条件が限られているため、適用範囲の考察は限定的である。今後、複数の試験研究機関による共同分析の結果をもとに、UoA RTI Platformの保持指標変換法で算出されるLC保持指標の適用範囲を明らかにする。

謝辞

- 本研究の一部はJSPS科研費 23H0053の助成を受けた。
- 研究遂行においては、国立環境研究所の鬼塚弓子氏の協力を得た。

ご清聴ありがとうございました。

UoA-RTI Platform

ログイン

Retention Time Indices Platform (Log-in Page)

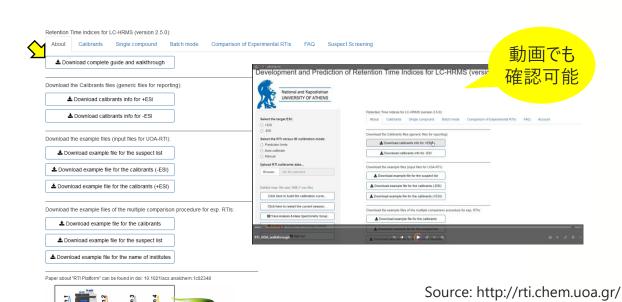
Welcome to Retention Time Indices (RTI) platform. RTI platform is created to harmonize retention time data obtained from liquid chromatography high resolution mass spectrometry (LC-HRMS). RTI website enables to get use of retention time data during suspect and non-target screening. It can be used to build the calibration curve for any RPLC condition or to calculate the experimental and predicted RTIs. In addition, experimental RTIs from different LC conditions can be directly compared through multiple comparison procedure to remove false positive identifications.

RTI platform is developed at National and Kapodistrian University of Athens. It is at present freely accessible to all registered users and members of NORMAN Association.

For more information how to use RTI platform, contact Dr. Reza Aalizadeh (realizadeh@chem.uoa.gr).

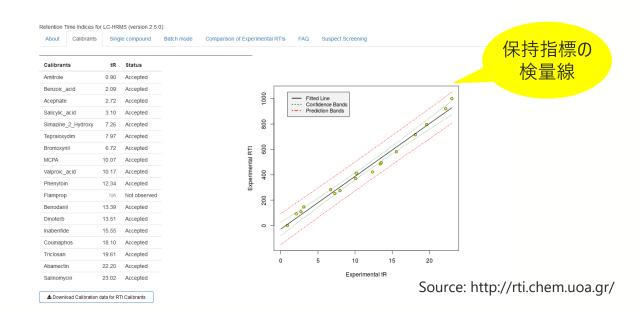
In case, you encounter any problems with log-in, please, contact UOA-RTI team at trams@chem.uoa.gr.



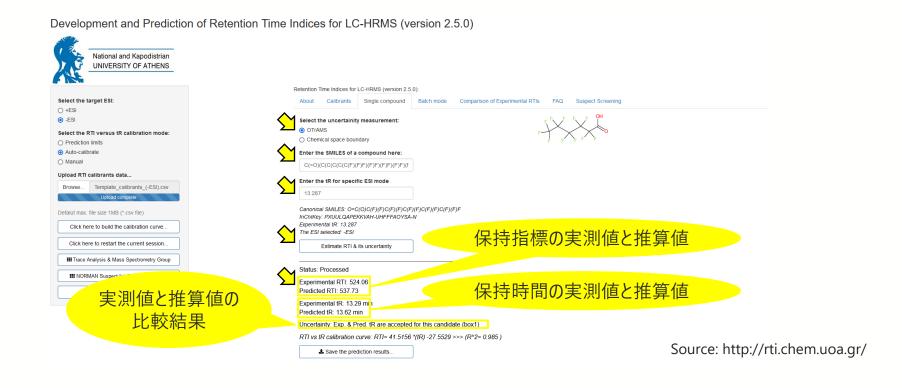

Source: http://rti.chem.uoa.gr/

UoA-RTI Platform

Development and Prediction of Retention Time Indices for LC-HRMS (version 2.5.0)



保持指標の検量線の作成


Development and Prediction of Retention Time Indices for LC-HRMS (version 2.5.0)

対象物質の保持指標の実測値と推算値の算出

RTI calibrant (ESI+)

Compound	CAS RN	Mol. Formula	Mol. Ion	m/z	Assigned RTI
Guanylurea	141-83-3	C2H6N4O	[M+H]+	103.0614	1
Amitrole	61-82-5	C2H4N4	[M+H]+	85.0509	6.11
Histamine	51-45-6	C5H9N3	[M+H]+	112.0869	20.63
Chlormequat	7003-89-6	C5H13CIN+	M+	123.0809	27.5
Methamidophos	10265-92-6	C2H8NO2PS	[M+H]+	142.0086	110.77
Vancomycin	1404-90-6	C66H75Cl2N9O24	[M+2H]2+	1448.4375	148.97
Cefoperazone	62893-19-0	C25H27N9O8S2	[M+H]+	646.1497	233
Trichlorfon	52-68-6	C4H8Cl3O4P	[M+H]+	256.9299	299.47
Butocarboxim	34681-10-2	C7H14N2O2S	[M-C2H4NO2]+	191.0849	363.64
Dichlorvos	62-73-7	C4H7Cl2O4P	[M+H]+	220.9532	434.68
Tylosin	1401-69-0	C46H77NO17	[M+H]+	916.5264	501.91
TCMTB	21564-17-0	C9H6N2S3	[M+H]+	238.9766	606.57
Rifaximin	80621-81-4	C43H51N3O11	[M+H]+	786.3596	668.45
Spinosad A	168316-95-8	C41H65NO10	[M+H]+	731.4603	766.23
	119791-41-2		[M+H]+		
Abamectin	65195-55-3	C48H72O14	[M+NH4]+	873.4995	941.94
Nigericin	28380-24-7	C40H68O11	[M+NH4]+	725.4834	964.86
Ivermectin B1a	70288-86-7	C48H74O14	[M+NH4]+	875.5151	1000

RTI calibrant (ESI⁻)

Compound	CAS RN	Mol. Formula	Mol. Ion	m/z	Assigned RTI
Amitrole	61-82-5	C2H4N4	[M-H]-	83.0363	1
Benzoic acid	65-85-0	C7H6O2	[M-H]-	121.0295	93.08
Acephate	30560-19-1	C4H10NO3PS	[M-H]-	182.0046	109.23
Salicylic acid	69-72-7	C7H6O3	[M-H]-	137.0244	146.92
Simazine 2-Hydroxy	2599-11-3	C7H13N5O	[M-H]-	182.1047	253.08
Tepraloxydim Peak1	149979-41-9	C17H24CINO4	[M-H]-	340.1321	276.15
Bromoxynil	1689-84-5	C7H3Br2NO	[M-H]-	273.8509	283.08
MCPA	94-74-6	C9H9ClO3	[M-H]-	199.0167	370.77
Valproic acid	99-66-1	C8H16O2	[M-H]-	143.1078	413.08
Phenytoin	57-41-0	C15H12N2O2	[M-H]-	251.0826	422.31
Flamprop		C16H13CIFNO3	[M-H]-		
Benodanil	15310-01-7	C13H10INO	[M-H]-	321.9734	486.15
Dinoterb	1420-07-1	C10H12N2O5	[M-H]-	239.0673	496.92
Inabenfide	82211-24-3	C19H15CIN2O2	[M-H]-	337.0749	581.54
Coumaphos	56-72-4	C14H16ClO5PS	[M-H]-	361.0072	716.15
Triclosan	3380-34-5	C12H7Cl3O2	[M-H]-	286.9439	796.15
Avermectin B1a	65195-55-3	C48H72O14	[M-H]-	871.4849	920.77
Salinomycin	53003-10-4	C42H70O11	[M-H]-	749.4845	1000

Target compound (ESI+)

Group	Compound	CAS RN	Mol. Formula	Mono mass	Pred. RTI
	Oleamide	301-02-0	C18H35NO	281.2719	821.95
Phthalates, etc.	DEHP	117-81-7	C24H38O4	390.2770	1001.44
	DINP	28553-12-0	C26H42O4	418.3083	1023.52
	TOTM	3319-31-1	C33H54O6	546.3920	1072.16
	TMP	512-56-1	C3H9O4P	140.0238	237.25
	TEP	78-40-0	C6H15O4P	182.0708	418.64
	TAP	1623-19-4	C9H15O4P	218.0708	578.93
	TPRP	513-08-6	C9H21O4P	224.1177	690.48
	TIBP	126-71-6	C12H27O4P	266.1647	799.68
	TNBP	126-73-8	C12H27O4P	266.1647	800.96
	TPEP	2528-38-3	C15H33O4P	308.2116	869.75
Organophosphatos	TPHP	115-86-6	C18H15O4P	326.0708	741.02
Organophosphates (OPEs)	4MPDPP	78-31-9	C19H17O4P	340.0864	829.42
(OPES)	B4MPPP	34909-69-8	C20H19O4P	354.1021	846.68
	EHDPP	1241-94-7	C20H27O4P	362.1647	890.84
	2IPPDPP	64532-94-1	C21H21O4P	368.1177	844.50
	4IPPDPP	55864-04-5	C21H21O4P	368.1177	863.86
	T4MPP	78-32-0	C21H21O4P	368.1177	863.86
	4tBPDPP	981-40-8	C22H23O4P	382.1334	873.13
	TBOEP	78-51-3	C18H39O7P	398.2433	861.66
	B2IPPPP	69500-29-4	C24H27O4P	410.1647	907.29

Target compound (ESI+)

Group	Compound	CAS RN	Mol. Formula	Mono mass	Pred. RTI
	B4IPPPP	55864-07-8	C24H27O4P	410.1647	910.56
	24DIPPDPP	96107-55-0	C24H27O4P	410.1647	912.64
	T35DMPP	25653-16-1	C24H27O4P	410.1647	955.3
	T26DMPP	121-06-2	C24H27O4P	410.1647	961.45
	TNOP	1806-54-8	C24H51O4P	434.3525	989.00
	TEHP	78-42-2	C24H51O4P	434.3525	1013.62
Organophosphates	B4tBPPP	115-87-7	C26H31O4P	438.1960	978.00
(OPEs)	T3IPPP	72668-27-0	C27H33O4P	452.2116	962.49
	T4IPPP	26967-76-0	C27H33O4P	452.2116	965.67
	T2IPPP	64532-95-2	C27H33O4P	452.2116	973.74
	T4tBPP	78-33-1	C30H39O4P	494.2586	857.90
	PBDPP	57583-54-7	C30H24O8P2	574.0946	1033.47
	PBDMPP	139189-30-3	C38H40O8P2	686.2198	755.62
	BPA-BDPP	5945-33-5	C39H34O8P2	692.1729	982.83
	TCEP	115-96-8	C6H12Cl3O4P	283.9539	530.74
Chlarinatad ODFa	TCIPP	13674-84-5	C9H18Cl3O4P	326.0008	650.27
Chlorinated OPEs	TDCIPP	13674-87-8	C9H15Cl6O4P	429.8810	877.93
(CI-OPEs)	DEG-BDCIPP	184530-92-5	C16H32Cl4O9P2	572.0246	857.13
	BCMP-BCEP	38051-10-4	C13H24Cl6O8P2	581.9048	810.48

Target compound (ESI+)

Group	Compound	CAS RN	Mol. Formula	Mono mass	Pred. RTI
Dua vainata d flavor	TDBPP	126-72-7	C9H15Br6O4P	697.5747	786.6
Brominated flame	TTBNPP	19186-97-1	C15H24Br9O4P	1019.3960	649.57
retardants (Br-FRs)	TTBP-TAZ	25713-60-4	C21H6Br9N3O3	1066.2978	732.08
	5:3FTB	171184-14-8	C12H14F11NO2	413.0849	482.29
Cationia 9	5:1:2FTB	171184-02-4	C12H13F12NO2	431.0755	516.21
Cationic & Zwitterionic PFASs	N-AP-FHxSA	50598-28-2	C11H13F13N2O2S	484.0490	724.27
ZWILLEHOHIC FFA3S	N-TAmP-FHxSA	70248-51-0	C12H16F13N2O2S+	499.0725	581.1
	N-CMAmP-6:2FOSA	34455-29-3	C15H19F13N2O4S	570.0858	555.95

Group	Compound	CAS RN	Mol. Formula	Mono mass	Pred. RTI
BPA	Bisphenol A	80-05-7	C15H16O2	228.1150	682.49
OPE	DPHP	838-85-7	C12H11O4P	250.0395	307
CL ODE-	BDCIPP	72236-72-7	C6H11Cl4O4P	319.9120	526.91
CI-OPEs	TDCIPP	13674-87-8	C9H15Cl6O4P	429.8810	782.8
	BRP246	118-79-6	C6H3Br3O	329.7714	644.72
	TBBPA	79-94-7	C15H12Br4O2	543.7530	814.02
	TBBPS	39635-79-5	C12H6Br4O4S	565.6679	493.98
	aHBCD	134237-50-6	C12H18Br6	641.6447	790.5
Brominated	bHBCD	134237-51-7	C12H18Br6	641.6447	790.5
flame retardants	gHBCD	134237-52-8	C12H18Br6	641.6447	790.5
(Br-FRs)	TDBPP	126-72-7	C9H15Br6O4P	697.5747	902.06
	TBDP-TAZTO	52434-90-9	C12H15Br6N3O3	728.6152	770.49
	TBBPA-BDBPE	21850-44-2	C21H20Br8O2	943.4848	748.41
	TBBPS-BDBPE	42757-55-1	C18H14Br8O4S	965.3998	453.54
	TTBNPP	19186-97-1	C15H24Br9O4P	1017.3981	792.43
	PFBS	375-73-5	C4HF9O3S	299.9503	278.72
	PFEESA	113507-82-7	C4HF9O4S	315.9452	307.75
DEAC cultonic acids	4:2FTS	757124-72-4	C6H5F9O3S	327.9816	315.97
PFAS, sulfonic acids	PFHxS	355-46-4	C6HF13O3S	399.9439	393.27
	6:2FTS	27619-97-2	C8H5F13O3S	427.9752	423.13
	PFHpS	375-92-8	C7HF15O3S	449.9407	428.15

Group	Compound	CAS RN	Mol. Formula	Mono mass	Pred. RTI
	PFOS	1763-23-1	C8HF17O3S	499.9375	447.71
	8:2FTS	39108-34-4	C10H5F17O3S	527.9688	445.27
DEAC sulfania asida	9CI-PF3ONS	756426-58-1	C8HCIF16O4S	531.9029	463.76
PFAS, sulfonic acids	PFDS	335-77-3	C10HF21O3S	599.9311	440.01
	10:2FTS	120226-60-0	C12H5F21O3S	627.9624	428.23
	11CI-PF3OUdS	763051-92-9	C10HCIF20O4S	631.8965	442.59
	FBSA	30334-69-1	C4H2F9NO2S	298.9663	289.31
	N-MeFBSA	68298-12-4	C5H4F9NO2S	312.9819	367.8
	N-MeFBSE	34454-97-2	C7H8F9NO3S	357.0081	356.06
	FHxSA	41997-13-1	C6H2F13NO2S	398.9599	387.48
	FOSA	754-91-6	C8H2F17NO2S	498.9535	434.06
PFAS, sulfonamides	N-MeFOSA	31506-32-8	C9H4F17NO2S	512.9691	464.8
	N-EtFOSA	4151-50-2	C10H6F17NO2S	526.9848	466.42
	N-MeFOSE	24448-09-7	C11H8F17NO3S	556.9953	435.4
	N-MeFOSAA	2355-31-9	C11H6F17NO4S	570.9746	425.39
	N-EtFOSE	1691-99-2	C12H10F17NO3S	571.0110	436.88
	N-EtFOSAA	2991-50-6	C12H8F17NO4S	584.9903	431.33
	PFBA	375-22-4	C4HF7O2	213.9865	233.93
DEAC carbovalic acids	PFMOPA	377-73-1	C4HF7O3	229.9814	300.41
PFAS, carboxylic acids	PFPeA	2706-90-3	C5HF9O2	263.9833	385.25
	PFMOBA	863090-89-5	C5HF9O3	279.9782	446.84

Group	Compound	CAS RN	Mol. Formula	Mono mass	Pred. RTI
	NFDHA	151772-58-6	C5HF9O4	295.9731	526.09
	PFHxA	307-24-4	C6HF11O2	313.9801	537.73
	GenX	13252-13-6	C6HF11O3	329.9750	598.81
	5:3FTCA	914637-49-3	C8H5F11O2	342.0114	676.81
	6:2FTUCA	70887-88-6	C8H2F12O2	357.9863	533.14
	PFHpA	375-85-9	C7HF13O2	363.9769	674.82
	ADONA	919005-14-4	C7H2F12O4	377.9761	732.4
	6:2FTCA	53826-12-3	C8H3F13O2	377.9925	729.49
	PFOA	335-67-1	C8HF15O2	413.9737	803.48
	7:3FTCA	812-70-4	C10H5F15O2	442.0050	894.53
PFAS, carboxylic acids	8:2FTUCA	70887-84-2	C10H2F16O2	457.9799	583.22
	PFNA	375-95-1	C9HF17O2	463.9705	887.5
	8:2FTCA	27854-31-5	C10H3F17O2	477.9862	892.98
	PFDA	335-76-2	C10HF19O2	513.9673	883.45
	10:2FTUCA	70887-94-4	C12H2F20O2	557.9735	564.37
	PFUdA	2058-94-8	C11HF21O2	563.9641	827.06
	10:2FTCA	53826-13-4	C12H3F21O2	577.9798	804.31
	PFDoA	307-55-1	C12HF23O2	613.9609	750.34
	PFTrDA	72629-94-8	C13HF25O2	663.9577	670.18
	PFTeDA	376-06-7	C14HF27O2	713.9545	593.33
	PFHxDA	67905-19-5	C16HF31O2	813.9482	458.06

	Compound	CAS RN	Mol. Formula	Mono mass	Pred. RTI
PFAS, carboxylic acids	PFODA	16517-11-6	C18HF35O2	913.9418	350.12
,	6:2PAP	57678-01-0	C8H6F13O4P	443.9796	694.93
	8:2PAP	57678-03-2	C10H6F17O4P	543.9732	815.86
PFAS, phosphates	6:2diPAP	57677-95-9	C16H9F26O4P	789.9823	511.21
	6:2/8:2diPAP	943913-15-3	C18H9F30O4P	889.9759	391.95
	8:2diPAP	678-41-1	C20H9F34O4P	989.9696	298.55